A filtered category OS and applications /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
1990.
|
Colección: | Memoirs of the American Mathematical Society ;
Volume 83, no. 419. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- CONTENTS
- I. INTRODUCTION
- 1. INTRODUCTION
- 1.1. Summary
- 1.2. Filtered modules and filtered characters
- 1.3. Projective and self-dual modules
- 1.4. Overview of paper
- 1.5. Acknowledgements
- II. THE HECKE MODULE
- 2. THE SIMPLE AND VERMA BASES
- 2.1. Kazhdan-Lusztig polynomials
- 2.2. The Hecke module: four equivalent definitions
- 2.3. The Hecke module: proof of equivalences
- 2.4. Duality and the simple basis
- 2.5. The Hecke algebra action
- 3. THE PROJECTIVE AND SELF-DUAL BASES
- 3.1. The projective basis
- 3.2. Some elements of the Hecke algebra3.3. An involution of M[sup(*)]sub(s)]
- 3.4. A new self-dual basis
- 4. THE SPECIALIZED HECKE MODULE
- 4.1. Definitions
- 4.2. Duality polynomials
- 4.3. A Jantzen sum formula
- III. THE FILTERED CATEGORY O[sub(s)]
- 5. THE CATEGORY O AND TRANSLATION FUNCTORS
- 5.1. The category and its Grothendieck group
- 5.2. Translation functors
- 6. THE FILTERED CATEGORY O[sub(s)] AND TRANSLATION FUNCTORS
- 6.1. Definition and basic properties of the filtered category
- 6.2. Some important filtrations
- 6.3. Translation functors on the filtered categoryIV. APPLICATIONS
- 7. RADICAL FILTRATIONS OF GENERALIZED VERMA MODULES AND PROJECTIVE MODULES
- 7.1. Radical filtrations of generalized Verma modules
- 7.2. Radical filtrations of projective indecomposable modules
- 7.3. More on radical filtrations
- 7.4. Rigidity of generalized Verma modules and projective modules
- 8. SELF-DUAL PROJECTIVE MODULES AND THEIR FILTERED CHARACTERS
- 8.1. Self-dual projective modules: review
- 8.2. Filtered self-duality of certain projective modules
- 8.3. Applications
- 9. SELF-DUAL MODULES WITH A VERMA FLAG AND THEIR FILTERED CHARACTERS9.1. A class of self-dual modules with a Verma flag
- 9.2. A category of self-dual modules
- REFERENCES