Constructing nonhomeomorphic stochastic flows /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
1987.
|
Colección: | Memoirs of the American Mathematical Society ;
Volume 70, no. 376. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Contents
- Part I. Introduction
- 1. Background
- 2. An outline of the main results
- 3. Pure stochastic flows
- Part II. Construction of a pure stochastic flow with given finite-dimensional distributions
- 4. Convolution of measures with respect to composition of functions
- 5. A projective system for building a pure stochastic flow
- 6. Existence theorem for pure stochastic flows
- Part III. Construction of a stochastic flow assuming almost no fixed points of discontinuity
- 7. Probability measures with almost no fixed points of discontinuity
- 8. Fluid Radon probability measures and their convolution9. Existence theorem for pure stochastic flows assuming almost no fixed points of discontinuity
- Part IV.
- 10. Construction of a convolution semigroup of probability measures from finite-dimensional Markov processes
- Part V. Covariance functions and the corresponding sets of finite-dimensional motions
- 11. Algebraic properties of the covariance function
- 12. Constructing the finite-dimensional motions
- 13. Stochastic continuity in the non-isotropic case
- 14. Stochastic continuity and coalescence in the isotropic case15. The one-dimensional case
- 16. An example in dimension two
- Part VI. The geometry of coalescence
- 17. Coalescence times and the coalescent set process
- Appendix A. Baire sets and Radon probability measures
- Appendix B. Projective systems of probability spaces
- References