Intersection pairings on Conley indices /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
1996.
|
Colección: | Memoirs of the American Mathematical Society ;
Volume 119, no. 571. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Contents
- Introduction
- Chapter 1. Basic Notation and Background Definitions
- A. Basic Notation
- B. The Conley Index
- C. Homology and Cohomology of Conley Indices
- D. Sign Conventions for Products in Homology and Cohomology
- Chapter 2. TheIntersection Pairings L, L, and [sup(#)]L
- A. Pairs of Index Pairs Admissible for the Intersection Pairing
- B. The Euclidean Case: the Homology Intersection Number Pairing L
- C. The Manifold Case: the Intersection Class and NumberPairings L and [(sup(#)]L
- ""Chapter 3. Statement of the Continuation Results and Examples""""A. Invariance of Intersection Numbers under Continuation""; ""B. Continuation of £ over a Path of Isolated Invariant Sets""; ""Chapter 4. Construction of Bilinear Pairings on Conley Indices""; ""A. The Existence of Admissible Pairs of Index Pairs""; ""B. Functorially Produced Pairings on the Conley Indices""; ""C. The Proofs of Theorems 2.4 and 2.11""; ""Chapter 5. Proofs of the Continuation Results""; ""A. Maps between Conley Indices from Paths of Invariant Sets""; ""B. The Proofs of Theorems 3.1, 3.2, 3.3, and 3.7""
- ""Chapter 6. Some Basic Computational Tools""""A. Conditions on Singular Cycles for Computing L and [sup(#)]L""; ""B. The Behavior of £ under Orbit Preserving Maps""; ""Chapter 7. L for Normally Hyperbolic Invariant Submanifolds""; ""A. Summary of Results""; ""B. Computational Preliminaries""; ""C. Results Leading to the Proof of Theorem 7.5""; ""D. Results Leading to the Proof of Theorem 7.6""; ""Chapter 8. Products of Intersection Pairings""; ""A. Preliminary Observations and Definitions""; ""B. Conley Indices of Product Invariant Sets""; ""C. A Kunneth Theorem for Conley Indices""