Cargando…

Stationary subdivision /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Cavaretta, Alfred S., 1944- (Autor), Dahmen, Wolfgang, 1949- (Autor), Micchelli, Charles A. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 1991.
Colección:Memoirs of the American Mathematical Society ; Volume 93, no. 453.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Table of Contents
  • 1. Introduction
  • 2. Subdivision Schemes: Convergence Concepts and the Associated Functional Equation
  • 2.1. The form of the limiting surface of uniformly convergent subdivision schemes
  • 2.2. Consequences of the finite support of the mask
  • 2.3. Other notions of convergence; weakly convergent schemes
  • 2.4. Matrix masks
  • 3. Contractivity of the Subdivision Operator
  • 3.1. Contractivity as a convergence criterion
  • 3.2. Contractivity for masks supported on convex sets
  • 3.3. Contractivity via factorization of the subdivision operator
  • ""4. Subdivision from Dimension Compression""""4.1. Compression of the refinable function[omitted]""; ""4.2. The algebra of compressed schemes""; ""4.3. Convergence theorems for compressed schemes""; ""4.4. The line average algorithm""; ""5. Solution of the Functional Equation""; ""5.1. Necessary conditions in terms of the geometric mean""; ""5.2. Sufficient conditions based on the Paleyâ€?Wiener theorem""; ""5.3. Conditions for convergence of the subdivision scheme suggested by the mean ergodic theorem""; ""6. Algebraic Properties of Subdivision Schemes""
  • 6.1. The subdivision operator on polynomial sequences6.2. Spectral properties of S on polynomial sequence spaces
  • 6.3. Polynomial subspaces generated by convergent subdivision schemes
  • 6.4. Matrix representation for a local convergence analysis of regular subdivision schemes; matrix subdivision schemes
  • 7. Matrix Refinement Equation
  • 7.1. Contractivity for matrix subdivision schemes
  • 7.2. Definition of refinement pairs
  • 7.3. Refinement pairs which produce polynomial surfaces
  • ""7.4. Necessary and sufficient conditions for the generation of smooth surfaces by a refinement pair""""7.5. The fractal nature of surfaces generated by a refinement pair""; ""8. Smoothness of Sâ€?Refinable Functions and Consequences""; ""8.1. Determining smoothness of the refinahle function using differenced subdivision schemes""; ""8.2. Subdivision schemes with smooth refinahle functions generate polynomials""; ""8.3. Univariate subdivision schemes producing piecewise polynomial functions""; ""9. Appendix""; ""References""