|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn891383735 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
140904t19951995riua ob 000 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCO
|d EBLCP
|d OCLCQ
|d OCLCF
|d OCLCQ
|d OCLCO
|d OCLCQ
|d QGK
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1259086329
|
020 |
|
|
|a 9781470401405
|q (e-book)
|
020 |
|
|
|a 1470401401
|q (e-book)
|
020 |
|
|
|z 9780821803615
|
035 |
|
|
|a (OCoLC)891383735
|z (OCoLC)1259086329
|
050 |
|
4 |
|a QA335
|b .G556 1995eb
|
082 |
0 |
4 |
|a 515/.223
|2 20
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Gilman, Jane,
|d 1945-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJr3wwRRGkbVKxtPTwKGHC
|
245 |
1 |
0 |
|a Two-generator discrete subgroups of PSL (2, R) /
|c Jane Gilman.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 1995.
|
264 |
|
4 |
|c ©1995
|
300 |
|
|
|a 1 online resource (221 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v Volume 117, Number 561
|
500 |
|
|
|a "September 1995, volume 117, number 561 (fourth of 5 numbers)."
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Contents -- I: Introduction -- 1 Introduction -- 1.1 Overview Intersecting Axes -- 1.2 Overview of the intertwining cases -- 1.3 Why an algorithm is needed -- 2 The Acute Triangle Theorem -- 2.1 Nielsen equivalence -- 2.2 Idea of proof: Acute triangle theorem -- 2.3 Labeling Conventions -- 2.4 Ascending order conventions -- 2.5 The Triangle Algorithm -- 2.6 Q and the last triangle along A -- 2.7 Combining triangle algorithm steps -- 2.8 The sides and heights converge to 0 -- 2.9 Acute triangle theorem: proof -- 3 Discreteness Theorem Proof Outline
|
505 |
8 |
|
|a 3.1 The Discreteness Theorem3.2 Discreteness theorem -- 3.3 Geometric equivalence theorems -- II: Preliminaries -- 4 Triangle Groups and their Tilings -- 4.1 Basic facts about triangle groups -- 4.2 Minimal tiling distances -- 4.3 The wedge at a vertex -- 4.4 Proofs of lemmas and theorems -- 4.5 Additional Notation -- 4.6 Distances in the extended wedge -- 5 Pentagons -- 5.1 Constructing the pentagon, P[sub(A, B)] -- 5.2 Notation -- 5.3 Applying the Poincare Polygon Theorem -- 5.4 Pentagon Tilings -- 5.5 Distances in the shingling
|
505 |
8 |
|
|a ""8.4 Pentagon distances (2,3, n) t = 3 k = 3""; ""9 Nielsen Eq: (2,3, n) t = 3; k = 3""; ""9.1 Introduction""; ""9.2 Types of triples: distances""; ""9.3 Locating t[sub(2)] and t[sub(3)]""; ""10 Nielsen Eq: (2,4, n) t = 2; k = 2""; ""10.1 Introduction""; ""10.2 Types of triples""; ""10.3 Location of t[sub(1)],t[sub(2)] and t[sub(3)]""; ""11 Pentagon t = 9 & 2�2 Spectrum""; ""11.1 Step 1: Label the wedge""; ""11.2 Step 2: Double and Extend""; ""11.3 Step 3: Drop perpendiculars""; ""11.4 The two�two spectrum""; ""11.5 More distance computations""; ""11.6 Distances to q�[sub(0)]""
|
505 |
8 |
|
|a ""11.7 Locate three order two points""""12 The Seven & Geometric Eq t = 9""; ""12.1 Introduction""; ""12.2 The variation of h and b""; ""12.3 Rule out a seven on the β side""; ""12.4 Rule out a seven on the D side""; ""12.5 Interior sevens""; ""12.6 Notation""; ""12.7 Geometric equivalence (2,3, 7) t = 9; k = 2""; ""13 Discreteness Theorem Proof""; ""13.1 The Proof of the Discreteness Theorem""; ""13.2 The proof of sufficiency""; ""IV: The Real Number Algorithm and the Turing Machine Algorithm""; ""14 Forms of the Algorithm""; ""14.1 What is an algorithm?""
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Fuchsian groups.
|
650 |
|
0 |
|a Kleinian groups.
|
650 |
|
0 |
|a Teichmüller spaces.
|
650 |
|
6 |
|a Groupes fuchsiens.
|
650 |
|
6 |
|a Groupes de Klein.
|
650 |
|
6 |
|a Espaces de Teichmüller.
|
650 |
|
7 |
|a Fuchsian groups
|2 fast
|
650 |
|
7 |
|a Kleinian groups
|2 fast
|
650 |
|
7 |
|a Teichmüller spaces
|2 fast
|
776 |
0 |
8 |
|i Print version:
|a Gilman, Jane, 1945-
|t Two-generator discrete subgroups of PSL (2, R).
|d Providence, Rhode Island : American Mathematical Society, ©1995
|h x, 204 pages
|k Memoirs of the American Mathematical Society ; Volume 117, Number 561
|x 0065-9266
|z 9780821803615
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v Volume 117, no. 561.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113846
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3113846
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10918799
|
994 |
|
|
|a 92
|b IZTAP
|