Cargando…

Graph-related optimization and decision theory /

Constrained optimization is a challenging branch of operations research that aims to create a model which has a wide range of applications in the supply chain, telecommunications and medical fields. As the problem structure is split into two main components, the objective is to accomplish the feasib...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Krichen, Saossen
Otros Autores: Chaouachi, Jouhaina
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Wiley, 2014.
Colección:ISTE.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn890725715
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 140917s2014 enk ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d IDEBK  |d CDX  |d E7B  |d OCLCF  |d EBLCP  |d DEBSZ  |d COO  |d OCLCQ  |d ZCU  |d MERUC  |d OCLCQ  |d ICG  |d OCLCQ  |d DKC  |d OCLCQ  |d TUHNV  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 890981687 
020 |a 9781118984253  |q (electronic bk.) 
020 |a 1118984250  |q (electronic bk.) 
020 |a 9781848217430 
020 |a 1848217439 
020 |a 9781322149981 
020 |a 1322149984 
029 1 |a AU@  |b 000053548473 
029 1 |a AU@  |b 000061136324 
029 1 |a DEBBG  |b BV042987728 
029 1 |a DEBBG  |b BV044070349 
029 1 |a DEBSZ  |b 425891429 
029 1 |a DEBSZ  |b 431774072 
029 1 |a DEBSZ  |b 449449874 
029 1 |a DEBSZ  |b 475029356 
035 |a (OCoLC)890725715  |z (OCoLC)890981687 
050 4 |a QA402.5 
072 7 |a MAT  |x 003000  |2 bisacsh 
072 7 |a MAT  |x 029000  |2 bisacsh 
082 0 4 |a 519.3  |2 23 
049 |a UAMI 
100 1 |a Krichen, Saossen. 
245 1 0 |a Graph-related optimization and decision theory /  |c Saossen Krichen, Jouhaina Chaouachi. 
264 1 |a London :  |b Wiley,  |c 2014. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a ISTE 
500 |a Title from PDF title page (viewed on September 17, 2014). 
504 |a Includes bibliographical references and index. 
505 0 |a Cover page; Half-Title page; Title page; Copyright page; Contents; List of Tables; List of Figures; List of Algorithms; Introduction; 1: Basic Concepts in Optimization and Graph Theory; 1.1. Introduction; 1.2. Notation; 1.3. Problem structure and variants; 1.4. Features of an optimization problem; 1.5. A didactic example; 1.6. Basic concepts in graph theory; 1.6.1. Degree of a graph; 1.6.2. Matrix representation of a graph; 1.6.3. Connected graphs; 1.6.4. Itineraries in a graph; 1.6.5. Tree graphs; 1.6.6. The bipartite graphs; 1.7. Conclusion; 2: Knapsack Problems; 2.1. Introduction. 
505 8 |a 2.2. Graph modeling of the knapsack problem2.3. Notation; 2.4. 0-1 knapsack problem; 2.5. An example; 2.6. Multiple knapsack problem; 2.6.1. Mathematical model; 2.6.2. An example; 2.7. Multidimensional knapsack problem; 2.7.1. Mathematical model; 2.7.2. An example; 2.8. Quadratic knapsack problem; 2.8.1. Mathematical model; 2.8.2. An example; 2.9. Quadratic multidimensional knapsack problem; 2.9.1. Mathematical model; 2.9.2. An example; 2.10. Solution approaches for knapsack problems; 2.10.1. The greedy algorithm; 2.10.2. A genetic algorithm for the KP; 2.10.2.1. Solution encoding. 
505 8 |a 2.10.2.2. Crossover2.10.2.3. Mutation; 2.11. Conclusion; 3: Packing Problems; 3.1. Introduction; 3.2. Graph modeling of the bin packing problem; 3.3. Notation; 3.4. Basic bin packing problem; 3.4.1. Mathematical modeling of the BPP; 3.4.2. An example; 3.5. Variable cost and size BPP; 3.5.1. Mathematical model; 3.5.2. An example; 3.6. Vector BPP; 3.6.1. Mathematical model; 3.6.2. An example; 3.7. BPP with conflicts; 3.7.1. Mathematical model; 3.7.2. An example; 3.8. Solution approaches for the BPP; 3.8.1. The next-fit strategy; 3.8.2. The first-fit strategy; 3.8.3. The best-fit strategy. 
505 8 |a 3.8.4. The minimum bin slack3.8.5. The minimum bin slack'; 3.8.6. The least loaded heuristic; 3.8.7. A genetic algorithm for the bin packing problem; 3.8.7.1. Solution encoding; 3.8.7.2. Crossover; 3.8.7.3. Mutation; 3.9. Conclusion; 4: Assignment Problem; 4.1. Introduction; 4.2. Graph modeling of the assignment problem; 4.3. Notation; 4.4. Mathematical formulation of the basic AP; 4.4.1. An example; 4.5. Generalized assignment problem; 4.5.1. An example; 4.6. The generalized multiassignment problem; 4.6.1. An example; 4.7. Weighted assignment problem. 
505 8 |a 4.8. Generalized quadratic assignment problem4.9. The bottleneck GAP; 4.10. The multilevel GAP; 4.11. The elastic GAP; 4.12. The multiresource GAP; 4.13. Solution approaches for solving the AP; 4.13.1. A greedy algorithm for the AP; 4.13.2. A genetic algorithm for the AP; 4.13.2.1. Solution encoding; 4.13.2.2. Crossover; 4.13.2.3. Mutation; 4.14. Conclusion; 5: The Resource Constrained Project Scheduling Problem; 5.1. Introduction; 5.2. Graph modeling of the RCPSP; 5.3. Notation; 5.4. Single-mode RCPSP; 5.4.1. Mathematical modeling of the SM-RCPSP; 5.4.2. An example of an SM-RCPSP. 
520 |a Constrained optimization is a challenging branch of operations research that aims to create a model which has a wide range of applications in the supply chain, telecommunications and medical fields. As the problem structure is split into two main components, the objective is to accomplish the feasible set framed by the system constraints. The aim of this book is expose optimization problems that can be expressed as graphs, by detailing, for each studied problem, the set of nodes and the set of edges. This graph modeling is an incentive for designing a platform that integrates all optimizatio. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematical optimization. 
650 0 |a Statistical decision. 
650 6 |a Optimisation mathématique. 
650 6 |a Prise de décision (Statistique) 
650 7 |a MATHEMATICS  |x Applied.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Mathematical optimization  |2 fast 
650 7 |a Statistical decision  |2 fast 
700 1 |a Chaouachi, Jouhaina. 
758 |i has work:  |a Graph-related Optimization and Decision Theory [electronic resource] (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCXWTHyX6TmrGJvDmbdGT73  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Krichen, Saoussen.  |t Graph-related Optimization and Decision Theory.  |d Hoboken : Wiley, ©2014  |z 9781848217430 
830 0 |a ISTE. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1784143  |z Texto completo 
938 |a Coutts Information Services  |b COUT  |n 29836396 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1784143 
938 |a ebrary  |b EBRY  |n ebr10930298 
938 |a EBSCOhost  |b EBSC  |n 846049 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis29836396 
938 |a YBP Library Services  |b YANK  |n 12075822 
938 |a YBP Library Services  |b YANK  |n 12979682 
994 |a 92  |b IZTAP