Cargando…

How to think about analysis /

Analysis is a core subject in most undergraduate mathematics degrees. It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unpre...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Alcock, Lara (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Oxford University Press, 2014.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn890703939
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 140917s2014 enka ob 001 0 eng d
010 |z  2014935451 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d YDXCP  |d IDEBK  |d EBLCP  |d CDX  |d OCLCQ  |d COO  |d DEBSZ  |d OCLCQ  |d OCLCF  |d E7B  |d OSU  |d OCLCQ  |d MERUC  |d OCLCQ  |d UMK  |d UUM  |d OCLCQ  |d G3B  |d JBG  |d IGB  |d STF  |d VT2  |d UWK  |d UKAHL  |d OCLCQ  |d YDX  |d OCLCQ  |d OCLCO  |d OCLCQ  |d INARC  |d OCLCO  |d OCLCL 
015 |a GBB492414  |2 bnb 
016 7 |a 016855256  |2 Uk 
019 |a 890442223  |a 891383976  |a 959328536  |a 959591552  |a 962389652  |a 966172657  |a 1103274563  |a 1228568725  |a 1259217336  |a 1358641037 
020 |a 9780191035371  |q (electronic bk.) 
020 |a 0191035378  |q (electronic bk.) 
020 |a 1322105847  |q (ebk) 
020 |a 9781322105840  |q (ebk) 
020 |z 9780198723530 
020 |z 0198723539 
029 1 |a AU@  |b 000056014582 
029 1 |a AU@  |b 000065222664 
029 1 |a DEBSZ  |b 415193958 
029 1 |a DEBSZ  |b 445987170 
029 1 |a DEBSZ  |b 456571701 
029 1 |a DKDLA  |b 820050-katalog:9920591552005762 
029 1 |a GBVCP  |b 814752934 
035 |a (OCoLC)890703939  |z (OCoLC)890442223  |z (OCoLC)891383976  |z (OCoLC)959328536  |z (OCoLC)959591552  |z (OCoLC)962389652  |z (OCoLC)966172657  |z (OCoLC)1103274563  |z (OCoLC)1228568725  |z (OCoLC)1259217336  |z (OCoLC)1358641037 
037 |a 641835  |b MIL 
050 4 |a QA300 
072 7 |a MAT  |x 005000  |2 bisacsh 
072 7 |a MAT  |x 034000  |2 bisacsh 
082 0 4 |a 515  |2 23 
049 |a UAMI 
100 1 |a Alcock, Lara,  |e author. 
245 1 0 |a How to think about analysis /  |c by Lara Alcock. 
264 1 |a Oxford :  |b Oxford University Press,  |c 2014. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
504 |a Includes bibliographical references (pages 223-236) and index. 
520 8 |a Analysis is a core subject in most undergraduate mathematics degrees. It is elegant, clever and rewarding to learn, but it is hard. Even the best students find it challenging, and those who are unprepared often find it incomprehensible at first. This book aims to ensure that no student need be unprepared. 
505 0 |a Cover -- Contents -- Symbols -- Introduction -- Part 1 Studying Analysis -- 1 What is Analysis Like? -- 2 Axioms, Definitions and Theorems -- 2.1 Components of mathematics -- 2.2 Axioms -- 2.3 Definitions -- 2.4 Relating a definition to an example -- 2.5 Relating a definition to more examples -- 2.6 Precision in using definitions -- 2.7 Theorems -- 2.8 Examining theorem premises -- 2.9 Diagrams and generality -- 2.10 Theorems and converses -- 3 Proofs -- 3.1 Proofs and mathematical theories -- 3.2 The structure of a mathematical theory -- 3.3 How Analysis is taught -- 3.4 Studying proofs -- 3.5 Self-explanation in mathematics -- 3.6 Proofs and proving -- 4 Learning Analysis -- 4.1 The Analysis experience -- 4.2 Keeping up -- 4.3 Avoiding time-wasting -- 4.4 Getting your questions answered -- 4.5 Adjusting your strategy -- Part 2 Concepts in Analysis -- 5 Sequences -- 5.1 What is a sequence? -- 5.2 Representing sequences -- 5.3 Sequence properties: monotonicity -- 5.4 Sequence properties: boundedness and convergence -- 5.5 Convergence: intuition first -- 5.6 Convergence: definition first -- 5.7 Things to remember about convergence -- 5.8 Proving that a sequence converges -- 5.9 Convergence and other properties -- 5.10 Combining convergent sequences -- 5.11 Sequences that tend to infinity -- 5.12 Looking ahead -- 6 Series -- 6.1 What is a series? -- 6.2 Series notation -- 6.3 Partial sums and convergence -- 6.4 Geometric series again -- 6.5 A surprising example -- 6.6 Tests for convergence -- 6.7 Alternating series -- 6.8 A really surprising example -- 6.9 Power series and functions -- 6.10 Radius of convergence -- 6.11 Taylor series -- 6.12 Looking ahead -- 7 Continuity -- 7.1 What is continuity? -- 7.2 Function examples and specifications -- 7.3 More interesting function examples -- 7.4 Continuity: intuition first. 
505 8 |a 7.5 Continuity: definition first -- 7.6 Variants of the definition -- 7.7 Proving that a function is continuous -- 7.8 Combining continuous functions -- 7.9 Further continuity theorems -- 7.10 Limits and discontinuities -- 7.11 Looking ahead -- 8 Differentiability -- 8.1 What is differentiability? -- 8.2 Some common misconceptions -- 8.3 Differentiability: the definition -- 8.4 Applying the definition -- 8.5 Non-differentiability -- 8.6 Theorems involving differentiable functions -- 8.7 Taylor's Theorem -- 8.8 Looking ahead -- 9 Integrability -- 9.1 What is integrability? -- 9.2 Areas and antiderivatives -- 9.3 Approximating areas -- 9.4 Integrability definition -- 9.5 A non-integrable function -- 9.6 Riemann's condition -- 9.7 Theorems involving integrable functions -- 9.8 The Fundamental Theorem of Calculus -- 9.9 Looking ahead -- 10 The Real Numbers -- 10.1 Things you don't know about numbers -- 10.2 Decimal expansions and rational numbers -- 10.3 Rational and irrational numbers -- 10.4 Axioms for the real numbers -- 10.5 Completeness -- 10.6 Looking ahead -- Conclusion -- Bibliography -- Index. 
590 |a eBooks on EBSCOhost  |b EBSCO eBook Subscription Academic Collection - Worldwide 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Mathematical analysis. 
650 6 |a Analyse mathématique. 
650 7 |a MATHEMATICS  |x Calculus.  |2 bisacsh 
650 7 |a MATHEMATICS  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Mathematical analysis  |2 fast 
650 7 |a Analysis  |2 gnd 
758 |i has work:  |a How to think about analysis (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFGPJHB4MDXgX3TCkcmgjy  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Alcock, Lara.  |t How to think about analysis  |z 9780198723530  |w (OCoLC)890160746 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1780086  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27182923 
938 |a Coutts Information Services  |b COUT  |n 29752083 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1780086 
938 |a ebrary  |b EBRY  |n ebr10927568 
938 |a EBSCOhost  |b EBSC  |n 840823 
938 |a ProQuest MyiLibrary Digital eBook Collection  |b IDEB  |n cis29752083 
938 |a YBP Library Services  |b YANK  |n 12061623 
938 |a Internet Archive  |b INAR  |n howtothinkabouta0000alco 
994 |a 92  |b IZTAP