|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn890465608 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr mn||||||||| |
008 |
140912t20142014riu ob 000 0 eng d |
040 |
|
|
|a OSU
|b eng
|e rda
|e pn
|c OSU
|d GZM
|d UIU
|d COO
|d LLB
|d OCLCF
|d YDXCP
|d OCLCQ
|d OCLCA
|d EBLCP
|d LEAUB
|d OCLCQ
|d UKAHL
|d K6U
|d OCLCO
|d OCLCQ
|d QGK
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1259056290
|
020 |
|
|
|a 9781470418977
|q (online)
|
020 |
|
|
|a 1470418975
|q (online)
|
020 |
|
|
|z 9781470409098
|q (alk. paper)
|
020 |
|
|
|z 1470409097
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000056931842
|
035 |
|
|
|a (OCoLC)890465608
|z (OCoLC)1259056290
|
050 |
|
4 |
|a QA612.3
|b .P88 2014eb
|
082 |
0 |
4 |
|a 515/.39
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Putnam, Ian F.
|q (Ian Fraser),
|d 1958-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjyDFP3WvccbY8Qf49FHqP
|
245 |
1 |
2 |
|a A homology theory for Smale spaces /
|c Ian F. Putnam.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c [2014]
|
264 |
|
4 |
|c Ã2014
|
300 |
|
|
|a 1 online resource (v, 122 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 232, number 1094
|
500 |
|
|
|a "Volume 232, Number 1094 (sixth of 6 numbers), November 2014."
|
504 |
|
|
|a Includes bibliographical references (pages 121-122).
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t Preface
|t Chapter 1. Summary
|t Chapter 2. Dynamics
|t Chapter 3. Dimension groups
|t Chapter 4. The complexes of an $s/u$-bijective factor map
|t Chapter 5. The double complexes of an $s/u$-bijective pair
|t Chapter 6. A Lefschetz formula
|t Chapter 7. Examples
|t Chapter 8. Questions.
|
520 |
|
|
|a The author develops a homology theory for Smale spaces, which include the basics sets for an Axiom A diffeomorphism. It is based on two ingredients. The first is an improved version of Bowen's result that every such system is the image of a shift of finite type under a finite-to-one factor map. The second is Krieger's dimension group invariant for shifts of finite type. He proves a Lefschetz formula which relates the number of periodic points of the system for a given period to trace data from the action of the dynamics on the homology groups. The existence of such a theory was proposed by Bow.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Homology theory.
|
650 |
|
0 |
|a Chaotic behavior in systems.
|
650 |
|
6 |
|a Homologie.
|
650 |
|
6 |
|a Chaos.
|
650 |
|
7 |
|a Chaotic behavior in systems
|2 fast
|
650 |
|
7 |
|a Homology theory
|2 fast
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a A homology theory for Smale spaces (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCG3HDCbyKpWd6CWxVFFyJP
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|i Putnam, Ian F. (Ian Fraser), 1958-
|t Homology theory for Smale spaces.
|d Providence, Rhode Island : American Mathematical Society, [2014]
|z 9781470409098
|w (DLC) 2014024652
|w (OCoLC)881721537
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1094.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5295327
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37444895
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5295327
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12358262
|
994 |
|
|
|a 92
|b IZTAP
|