|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn890465241 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr mn||||||||| |
008 |
140912t20142014riu ob 000 0 eng d |
040 |
|
|
|a OSU
|b eng
|e rda
|e pn
|c OSU
|d GZM
|d UIU
|d COO
|d LLB
|d OCLCF
|d YDXCP
|d OCLCQ
|d OCLCA
|d EBLCP
|d LEAUB
|d OCLCQ
|d OCLCO
|d OCLCQ
|d UKAHL
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d QGK
|d IHS
|d OCLCL
|
066 |
|
|
|c (S
|
019 |
|
|
|a 1259178113
|
020 |
|
|
|a 9781470418960
|q (online)
|
020 |
|
|
|a 1470418967
|q (online)
|
020 |
|
|
|z 9780821898550
|q (alk. paper)
|
020 |
|
|
|z 0821898558
|q (alk. paper)
|
035 |
|
|
|a (OCoLC)890465241
|z (OCoLC)1259178113
|
050 |
|
4 |
|a QA564
|b .B53 2014eb
|
082 |
0 |
4 |
|a 515/.733
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Blei, R. C.
|q (Ron C.),
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjChw3QjfdrMT3twfFKVBX
|
245 |
1 |
4 |
|a The Grothendieck inequality revisited /
|c Ron Blei.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c [2014]
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (v, 90 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 232, number 1093
|
500 |
|
|
|a "Volume 232, Number 1093 (fifth of 6 numbers), November 2014."
|
504 |
|
|
|a Includes bibliographical references (pages 89-90).
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a The classical Grothendieck inequality is viewed as a statement about representations of functions of two variables over discrete domains by integrals of two-fold products of functions of one variable. An analogous statement is proved, concerning continuous functions of two variables over general topological domains.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
600 |
1 |
0 |
|a Grothendieck, A.
|q (Alexandre)
|
600 |
1 |
7 |
|a Grothendieck, A.
|q (Alexandre)
|2 fast
|1 https://id.oclc.org/worldcat/entity/E39PBJgHbJxqbdHMWcPDXQp3wC
|
650 |
|
0 |
|a Geometry, Algebraic.
|
650 |
|
6 |
|a Géométrie algébrique.
|
650 |
|
7 |
|a Geometry, Algebraic
|2 fast
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a The Grothendieck inequality revisited (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGJ6yt3gRr34RTDJwWhtfC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Blei, R.C. (Ron C.).
|t Grothendieck inequality revisited.
|d Providence, Rhode Island : American Mathematical Society, 2014
|z 9780821898550
|w (DLC) 2014024660
|w (OCoLC)881721539
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1093.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5295326
|z Texto completo
|
880 |
0 |
0 |
|6 505-00/(S
|t Chapter 1. Introduction --
|t Chapter 2. Integral representations: the case of discrete domains --
|t Chapter 3. Integral representations: the case of topological domains --
|t Chapter 4. Tools --
|t Chapter 5. Proof of Theorem 3.5 --
|t Chapter 6. Variations on a theme --
|t Chapter 7. More about Φ --
|t Chapter 8. Integrability --
|t Chapter 9. A Parseval-like formula --
|t Chapter 10. Grothendieck-like theorems in dimensions >2? --
|t Chapter 11. Fractional Cartesian products and multilinear functionals on a Hilbert space --
|t Chapter 12. Proof of Theorem 11.11 --
|t Chapter 13. Some loose ends
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37444894
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5295326
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12358261
|
994 |
|
|
|a 92
|b IZTAP
|