A power law of order 1/4 for critical mean field Swendsen-Wang dynamics /
The Swendsen-Wang dynamics is a Markov chain widely used by physicists to sample from the Boltzmann-Gibbs distribution of the Ising model. Cooper, Dyer, Frieze and Rue proved that on the complete graph K_n the mixing time of the chain is at most O(\sqrt{n}) for all non-critical temperatures. In this...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2014.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1092. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | The Swendsen-Wang dynamics is a Markov chain widely used by physicists to sample from the Boltzmann-Gibbs distribution of the Ising model. Cooper, Dyer, Frieze and Rue proved that on the complete graph K_n the mixing time of the chain is at most O(\sqrt{n}) for all non-critical temperatures. In this paper the authors show that the mixing time is \Theta(1) in high temperatures, \Theta(\log n) in low temperatures and \Theta(n^{1/4}) at criticality. They also provide an upper bound of O(\log n) for Swendsen-Wang dynamics for the q-state ferromagnetic Potts model on any tree of n vertices. |
---|---|
Notas: | "Volume 232, Number 1092 (fourth of 6 numbers), November 2014." |
Descripción Física: | 1 online resource (v, 84 pages) |
Bibliografía: | Includes bibliographical references (pages 83-84). |
ISBN: | 9781470418953 1470418959 |
ISSN: | 0065-9266 ; |