Cargando…

A power law of order 1/4 for critical mean field Swendsen-Wang dynamics /

The Swendsen-Wang dynamics is a Markov chain widely used by physicists to sample from the Boltzmann-Gibbs distribution of the Ising model. Cooper, Dyer, Frieze and Rue proved that on the complete graph K_n the mixing time of the chain is at most O(\sqrt{n}) for all non-critical temperatures. In this...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Long, Yun, 1982- (Autor), Nachmias, Asaf (Autor), Ning, Weiyang (Autor), Peres, Y. (Yuval) (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, 2014.
Colección:Memoirs of the American Mathematical Society ; no. 1092.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:The Swendsen-Wang dynamics is a Markov chain widely used by physicists to sample from the Boltzmann-Gibbs distribution of the Ising model. Cooper, Dyer, Frieze and Rue proved that on the complete graph K_n the mixing time of the chain is at most O(\sqrt{n}) for all non-critical temperatures. In this paper the authors show that the mixing time is \Theta(1) in high temperatures, \Theta(\log n) in low temperatures and \Theta(n^{1/4}) at criticality. They also provide an upper bound of O(\log n) for Swendsen-Wang dynamics for the q-state ferromagnetic Potts model on any tree of n vertices.
Notas:"Volume 232, Number 1092 (fourth of 6 numbers), November 2014."
Descripción Física:1 online resource (v, 84 pages)
Bibliografía:Includes bibliographical references (pages 83-84).
ISBN:9781470418953
1470418959
ISSN:0065-9266 ;