Cargando…

Transfer of Siegel cusp forms of degree 2 /

Let \pi be the automorphic representation of \textrm{GSp}_4(\mathbb{A}) generated by a full level cuspidal Siegel eigenform that is not a Saito-Kurokawa lift, and \tau be an arbitrary cuspidal, automorphic representation of \textrm{GL}_2(\mathbb{A}). Using Furusawa's integral representation for...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Pitale, Ameya, 1977- (Autor), Saha, Abhishek, 1982- (Autor), Schmidt, Ralf, 1968- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, [2014]
Colección:Memoirs of the American Mathematical Society ; no. 1090.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn890463876
003 OCoLC
005 20240329122006.0
006 m o d
007 cr mn|||||||||
008 140912t20142014riu ob 000 0 eng d
040 |a OSU  |b eng  |e rda  |e pn  |c OSU  |d GZM  |d UIU  |d COO  |d LLB  |d OCLCF  |d YDXCP  |d OCLCQ  |d OCLCA  |d EBLCP  |d LEAUB  |d OCLCQ  |d UKAHL  |d K6U  |d OCLCO  |d OCLCQ  |d QGK  |d OCLCO  |d OCLCL 
019 |a 1259227259 
020 |a 9781470418939  |q (online) 
020 |a 1470418932  |q (online) 
020 |z 9780821898567  |q (alk. paper) 
020 |z 0821898566  |q (alk. paper) 
035 |a (OCoLC)890463876  |z (OCoLC)1259227259 
050 4 |a QA243  |b .P58 2014eb 
082 0 4 |a 512.7  |2 23 
049 |a UAMI 
100 1 |a Pitale, Ameya,  |d 1977-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjtDCdmfBBCJ4t6bXfW4bd 
245 1 0 |a Transfer of Siegel cusp forms of degree 2 /  |c Ameya Pitale, Abhishek Saha, Ralf Schmidt. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c [2014] 
264 4 |c ©2014 
300 |a 1 online resource (v, 107 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 232, number 1090 
500 |a "Volume 232, Number 1090 (second of 6 numbers), November 2014." 
504 |a Includes bibliographical references (pages 103-107). 
588 0 |a Print version record. 
505 0 0 |t Introduction  |t Notation  |t Chapter 1. Distinguished vectors in local representations  |t Chapter 2. Global $L$-functions for $\textup {GSp}_4\times \textup {GL}_2$  |t Chapter 3. The pullback formula  |t Chapter 4. Holomorphy of global $L$-functions for $\textup {GSp}_4 \times \textup {GL}_2$  |t Chapter 5. Applications. 
520 |a Let \pi be the automorphic representation of \textrm{GSp}_4(\mathbb{A}) generated by a full level cuspidal Siegel eigenform that is not a Saito-Kurokawa lift, and \tau be an arbitrary cuspidal, automorphic representation of \textrm{GL}_2(\mathbb{A}). Using Furusawa's integral representation for \textrm{GSp}_4\times\textrm{GL}_2 combined with a pullback formula involving the unitary group \textrm{GU}(3,3), the authors prove that the L-functions L(s, \pi\times\tau) are ""nice"". The converse theorem of Cogdell and Piatetski-Shapiro then implies that such representations \pi have a functorial lift 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Cusp forms (Mathematics) 
650 0 |a Siegel domains. 
650 0 |a Modular groups. 
650 6 |a Formes paraboliques (Mathématiques) 
650 6 |a Domaines de Siegel. 
650 6 |a Groupes modulaires. 
650 7 |a Cusp forms (Mathematics)  |2 fast 
650 7 |a Modular groups  |2 fast 
650 7 |a Siegel domains  |2 fast 
700 1 |a Saha, Abhishek,  |d 1982-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjDxQJr7YV7RRQX6V68hDy 
700 1 |a Schmidt, Ralf,  |d 1968-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjBmqHHRH9QffWdRRrF4tq 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a Transfer of Siegel cusp forms of degree 2 (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGj8vhPQ9xhqdDKwWr4XV3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Pitale, Ameya, 1977-  |t Transfer of Siegel cusp forms of degree 2.  |d Providence, Rhode Island : American Mathematical Society, 2014  |z 9780821898567  |w (DLC) 2014024655  |w (OCoLC)881848594 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1090. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5295323  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37444891 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5295323 
938 |a YBP Library Services  |b YANK  |n 12358258 
994 |a 92  |b IZTAP