|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn890463876 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr mn||||||||| |
008 |
140912t20142014riu ob 000 0 eng d |
040 |
|
|
|a OSU
|b eng
|e rda
|e pn
|c OSU
|d GZM
|d UIU
|d COO
|d LLB
|d OCLCF
|d YDXCP
|d OCLCQ
|d OCLCA
|d EBLCP
|d LEAUB
|d OCLCQ
|d UKAHL
|d K6U
|d OCLCO
|d OCLCQ
|d QGK
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1259227259
|
020 |
|
|
|a 9781470418939
|q (online)
|
020 |
|
|
|a 1470418932
|q (online)
|
020 |
|
|
|z 9780821898567
|q (alk. paper)
|
020 |
|
|
|z 0821898566
|q (alk. paper)
|
035 |
|
|
|a (OCoLC)890463876
|z (OCoLC)1259227259
|
050 |
|
4 |
|a QA243
|b .P58 2014eb
|
082 |
0 |
4 |
|a 512.7
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Pitale, Ameya,
|d 1977-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjtDCdmfBBCJ4t6bXfW4bd
|
245 |
1 |
0 |
|a Transfer of Siegel cusp forms of degree 2 /
|c Ameya Pitale, Abhishek Saha, Ralf Schmidt.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c [2014]
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (v, 107 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 232, number 1090
|
500 |
|
|
|a "Volume 232, Number 1090 (second of 6 numbers), November 2014."
|
504 |
|
|
|a Includes bibliographical references (pages 103-107).
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t Introduction
|t Notation
|t Chapter 1. Distinguished vectors in local representations
|t Chapter 2. Global $L$-functions for $\textup {GSp}_4\times \textup {GL}_2$
|t Chapter 3. The pullback formula
|t Chapter 4. Holomorphy of global $L$-functions for $\textup {GSp}_4 \times \textup {GL}_2$
|t Chapter 5. Applications.
|
520 |
|
|
|a Let \pi be the automorphic representation of \textrm{GSp}_4(\mathbb{A}) generated by a full level cuspidal Siegel eigenform that is not a Saito-Kurokawa lift, and \tau be an arbitrary cuspidal, automorphic representation of \textrm{GL}_2(\mathbb{A}). Using Furusawa's integral representation for \textrm{GSp}_4\times\textrm{GL}_2 combined with a pullback formula involving the unitary group \textrm{GU}(3,3), the authors prove that the L-functions L(s, \pi\times\tau) are ""nice"". The converse theorem of Cogdell and Piatetski-Shapiro then implies that such representations \pi have a functorial lift
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Cusp forms (Mathematics)
|
650 |
|
0 |
|a Siegel domains.
|
650 |
|
0 |
|a Modular groups.
|
650 |
|
6 |
|a Formes paraboliques (Mathématiques)
|
650 |
|
6 |
|a Domaines de Siegel.
|
650 |
|
6 |
|a Groupes modulaires.
|
650 |
|
7 |
|a Cusp forms (Mathematics)
|2 fast
|
650 |
|
7 |
|a Modular groups
|2 fast
|
650 |
|
7 |
|a Siegel domains
|2 fast
|
700 |
1 |
|
|a Saha, Abhishek,
|d 1982-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjDxQJr7YV7RRQX6V68hDy
|
700 |
1 |
|
|a Schmidt, Ralf,
|d 1968-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjBmqHHRH9QffWdRRrF4tq
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a Transfer of Siegel cusp forms of degree 2 (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGj8vhPQ9xhqdDKwWr4XV3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Pitale, Ameya, 1977-
|t Transfer of Siegel cusp forms of degree 2.
|d Providence, Rhode Island : American Mathematical Society, 2014
|z 9780821898567
|w (DLC) 2014024655
|w (OCoLC)881848594
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1090.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5295323
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37444891
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5295323
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12358258
|
994 |
|
|
|a 92
|b IZTAP
|