Transfer of Siegel cusp forms of degree 2 /
Let \pi be the automorphic representation of \textrm{GSp}_4(\mathbb{A}) generated by a full level cuspidal Siegel eigenform that is not a Saito-Kurokawa lift, and \tau be an arbitrary cuspidal, automorphic representation of \textrm{GL}_2(\mathbb{A}). Using Furusawa's integral representation for...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
[2014]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 1090. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | Let \pi be the automorphic representation of \textrm{GSp}_4(\mathbb{A}) generated by a full level cuspidal Siegel eigenform that is not a Saito-Kurokawa lift, and \tau be an arbitrary cuspidal, automorphic representation of \textrm{GL}_2(\mathbb{A}). Using Furusawa's integral representation for \textrm{GSp}_4\times\textrm{GL}_2 combined with a pullback formula involving the unitary group \textrm{GU}(3,3), the authors prove that the L-functions L(s, \pi\times\tau) are ""nice"". The converse theorem of Cogdell and Piatetski-Shapiro then implies that such representations \pi have a functorial lift |
---|---|
Notas: | "Volume 232, Number 1090 (second of 6 numbers), November 2014." |
Descripción Física: | 1 online resource (v, 107 pages) |
Bibliografía: | Includes bibliographical references (pages 103-107). |
ISBN: | 9781470418939 1470418932 |
ISSN: | 0065-9266 ; |