Cargando…

Transfer of Siegel cusp forms of degree 2 /

Let \pi be the automorphic representation of \textrm{GSp}_4(\mathbb{A}) generated by a full level cuspidal Siegel eigenform that is not a Saito-Kurokawa lift, and \tau be an arbitrary cuspidal, automorphic representation of \textrm{GL}_2(\mathbb{A}). Using Furusawa's integral representation for...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Pitale, Ameya, 1977- (Autor), Saha, Abhishek, 1982- (Autor), Schmidt, Ralf, 1968- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, [2014]
Colección:Memoirs of the American Mathematical Society ; no. 1090.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:Let \pi be the automorphic representation of \textrm{GSp}_4(\mathbb{A}) generated by a full level cuspidal Siegel eigenform that is not a Saito-Kurokawa lift, and \tau be an arbitrary cuspidal, automorphic representation of \textrm{GL}_2(\mathbb{A}). Using Furusawa's integral representation for \textrm{GSp}_4\times\textrm{GL}_2 combined with a pullback formula involving the unitary group \textrm{GU}(3,3), the authors prove that the L-functions L(s, \pi\times\tau) are ""nice"". The converse theorem of Cogdell and Piatetski-Shapiro then implies that such representations \pi have a functorial lift
Notas:"Volume 232, Number 1090 (second of 6 numbers), November 2014."
Descripción Física:1 online resource (v, 107 pages)
Bibliografía:Includes bibliographical references (pages 103-107).
ISBN:9781470418939
1470418932
ISSN:0065-9266 ;