|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn890463461 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
140912t20142014riu ob 000 0 eng d |
040 |
|
|
|a OSU
|b eng
|e rda
|e pn
|c OSU
|d GZM
|d UIU
|d COO
|d YDXCP
|d N$T
|d OCLCQ
|d UAB
|d OCLCA
|d NRC
|d OCLCQ
|d EBLCP
|d LEAUB
|d OCLCQ
|d UKAHL
|d K6U
|d OCLCO
|d QGK
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1259082915
|
020 |
|
|
|a 9781470418922
|q (electronic bk.)
|
020 |
|
|
|a 1470418924
|q (electronic bk.)
|
020 |
|
|
|z 9780821898451
|q (alk. paper)
|
020 |
|
|
|z 0821898450
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000056931835
|
035 |
|
|
|a (OCoLC)890463461
|z (OCoLC)1259082915
|
050 |
|
4 |
|a QA188
|b .S45 2014eb
|
072 |
|
7 |
|a MAT
|x 002040
|2 bisacsh
|
082 |
0 |
4 |
|a 512.9/434
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Šemrl, Peter,
|d 1962-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJdWKVkv6RYHffph9YYHG3
|
245 |
1 |
4 |
|a The optimal version of Hua's fundamental theorem of geometry of rectangular matrices /
|c Peter Šemrl.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c [2014]
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (v, 74 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v volume 232, number 1089
|
500 |
|
|
|a "Volume 232, Number 1089 (first of 6 numbers), November 2014."
|
504 |
|
|
|a Includes bibliographical references (pages 73-74).
|
505 |
0 |
|
|a Notation and basic definitions -- Examples -- Statement of main results -- Proofs -- Preliminary results -- Splitting the proof of main results into subcases -- Square case -- Degenerate case -- Non-square case -- Proofs of corollaries.
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Hua's fundamental theorem of geometry of matrices describes the general form of bijective maps on the space of all m\times n matrices over a division ring \mathbb{D} which preserve adjacency in both directions. Motivated by several applications the author studies a long standing open problem of possible improvements. There are three natural questions. Can we replace the assumption of preserving adjacency in both directions by the weaker assumption of preserving adjacency in one direction only and still get the same conclusion? Can we relax the bijectivity assumption? Can we obtain an analogous.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Matrices.
|
650 |
|
0 |
|a Geometry, Algebraic.
|
650 |
|
6 |
|a Matrices.
|
650 |
|
6 |
|a Géométrie algébrique.
|
650 |
|
7 |
|a MATHEMATICS
|x Algebra
|x Intermediate.
|2 bisacsh
|
650 |
|
7 |
|a Geometry, Algebraic
|2 fast
|
650 |
|
7 |
|a Matrices
|2 fast
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a The optimal version of Hua's fundamental theorem of geometry of rectangular matrices (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGrYm7tqxGHHMjmd7dTyh3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Šemrl, Peter, 1962-
|t Optimal version of Hua's fundamental theorem of geometry of rectangular matrices
|z 9780821898451
|w (DLC) 2014024653
|w (OCoLC)881721538
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1089.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5295322
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37444890
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5295322
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 971245
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12358257
|
994 |
|
|
|a 92
|b IZTAP
|