Cargando…

The optimal version of Hua's fundamental theorem of geometry of rectangular matrices /

Hua's fundamental theorem of geometry of matrices describes the general form of bijective maps on the space of all m\times n matrices over a division ring \mathbb{D} which preserve adjacency in both directions. Motivated by several applications the author studies a long standing open problem of...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Šemrl, Peter, 1962- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, [2014]
Colección:Memoirs of the American Mathematical Society ; no. 1089.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn890463461
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 140912t20142014riu ob 000 0 eng d
040 |a OSU  |b eng  |e rda  |e pn  |c OSU  |d GZM  |d UIU  |d COO  |d YDXCP  |d N$T  |d OCLCQ  |d UAB  |d OCLCA  |d NRC  |d OCLCQ  |d EBLCP  |d LEAUB  |d OCLCQ  |d UKAHL  |d K6U  |d OCLCO  |d QGK  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1259082915 
020 |a 9781470418922  |q (electronic bk.) 
020 |a 1470418924  |q (electronic bk.) 
020 |z 9780821898451  |q (alk. paper) 
020 |z 0821898450  |q (alk. paper) 
029 1 |a AU@  |b 000056931835 
035 |a (OCoLC)890463461  |z (OCoLC)1259082915 
050 4 |a QA188  |b .S45 2014eb 
072 7 |a MAT  |x 002040  |2 bisacsh 
082 0 4 |a 512.9/434  |2 23 
049 |a UAMI 
100 1 |a Šemrl, Peter,  |d 1962-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJdWKVkv6RYHffph9YYHG3 
245 1 4 |a The optimal version of Hua's fundamental theorem of geometry of rectangular matrices /  |c Peter Šemrl. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c [2014] 
264 4 |c ©2014 
300 |a 1 online resource (v, 74 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 232, number 1089 
500 |a "Volume 232, Number 1089 (first of 6 numbers), November 2014." 
504 |a Includes bibliographical references (pages 73-74). 
505 0 |a Notation and basic definitions -- Examples -- Statement of main results -- Proofs -- Preliminary results -- Splitting the proof of main results into subcases -- Square case -- Degenerate case -- Non-square case -- Proofs of corollaries. 
588 0 |a Print version record. 
520 |a Hua's fundamental theorem of geometry of matrices describes the general form of bijective maps on the space of all m\times n matrices over a division ring \mathbb{D} which preserve adjacency in both directions. Motivated by several applications the author studies a long standing open problem of possible improvements. There are three natural questions. Can we replace the assumption of preserving adjacency in both directions by the weaker assumption of preserving adjacency in one direction only and still get the same conclusion? Can we relax the bijectivity assumption? Can we obtain an analogous. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Matrices. 
650 0 |a Geometry, Algebraic. 
650 6 |a Matrices. 
650 6 |a Géométrie algébrique. 
650 7 |a MATHEMATICS  |x Algebra  |x Intermediate.  |2 bisacsh 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a Matrices  |2 fast 
710 2 |a American Mathematical Society,  |e publisher. 
758 |i has work:  |a The optimal version of Hua's fundamental theorem of geometry of rectangular matrices (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGrYm7tqxGHHMjmd7dTyh3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Šemrl, Peter, 1962-  |t Optimal version of Hua's fundamental theorem of geometry of rectangular matrices  |z 9780821898451  |w (DLC) 2014024653  |w (OCoLC)881721538 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1089. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5295322  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH37444890 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL5295322 
938 |a EBSCOhost  |b EBSC  |n 971245 
938 |a YBP Library Services  |b YANK  |n 12358257 
994 |a 92  |b IZTAP