Modeling and Simulation : the Computer Science of Illusion.
Simulation is the art of using tools - physical or conceptual models, or computer hardware and software, to attempt to create the illusion of reality. The discipline has in recent years expanded to include the modelling of systems that rely on human factors and therefore possess a large proportion o...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Wiley,
2014.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Modeling and Simulation: The Computer Science of Illusion; Copyright; Contents; Editorial Foreword; Preface; Chapter 1 Basic Concepts and Tools; 1.1 Modeling and Simulation: What is It?; 1.2 Validity, Credibility, Tractability, and Verification; 1.3 System State and Causal Systems; 1.4 Classification of Dynamical Systems; 1.5 Discrete and Continuous Simulation; 1.6 Evolution of Simulation Software; 1.6.1 Control and Simulation Language (CSL); 1.6.2 Strategies of Discrete Event Execution; 1.6.3 GPSS; 1.6.4 SIMULA67; 1.6.5 Dynamo and System Dynamics Software; 1.6.6 SPICE
- 1.6.7 DEVS: Discrete Event System Specification1.6.8 DYMOLA; 1.6.9 Chronology of M&S Software Development; 1.6.10 Distributed Simulation; 1.6.11 High Level Architecture (HLA); Chapter 2 Continuous Simulation; 2.1 Introduction; 2.2 Ordinary Differential Equations and Models of Concentrated Parameter Systems; 2.3 Continuous Simulation with Analog Computers; 2.4 Numerical Methods for Ordinary Differential Equations (ODE); 2.4.1 Runge-Kutta Methods; 2.4.2 Richardson Approximations; 2.4.3 Predictor-Corrector Methods; 2.4.4 Stiff Equations; 2.4.5 Example of Continuous Simulation Using ODEs
- 2.5 Signal Flow Graphs2.6 Bond Graphs; 2.7 Alternative Modeling Tools and Dynamic Uncertainty; 2.8 Distributed Parameter Systems; 2.9 System Dynamics; 2.10 Galactic Simulations and The N-Body Problem; Chapter 3 Discrete and Combined Simulation
- Example of PASION Implementation; 3.1 Are Discrete Models Valid?; 3.1.1 The Discrete Time and Discrete Events; 3.1.2 Semidiscrete Events; 3.2 PASION
- PSM++ Simulation System; 3.2.1 PASION
- PSM++ Summary; 3.2.2 Getting Started; 3.2.3 Processes and Events; 3.2.4 Permanently Active Processes; 3.2.5 State and Conditional Events
- 3.2.6 PASION Code Generators3.3 Queuing Model Generator (QMG); 3.3.1 QMG Blocks; 3.3.2 Example of a QMG Model; 3.3.3 The SVOP Procedure; 3.3.4 PASION Animators; 3.3.5 Another QMG Example: Manufacturing System Model; 3.4 Complex System Simulator of PASION; 3.4.1 What is Complexity?; 3.4.2 CSS Module of PASION System; 3.4.3 Model Coupling; 3.4.4 Example; Chapter 4 Differential Inclusions in Modeling and Simulation; 4.1 Differential Inclusions; 4.2 Possible Applications; 4.3 Differential Inclusion Solver (DIS); 4.4 Application in Uncertainty Treatment
- 4.5 Uncertain Future and Differential Inclusions4.6 Conclusions and Future Research; Chapter 5 Fluid Dynamics
- Simulating Oscillating Gas Flow; 5.1 Computational Fluid Dynamics; 5.2 Numerical Problems; 5.3 The Simulation Tool; 5.4 Examples; 5.5 Oscillating Gas Flow; 5.6 Two-Dimensional Fluid-Dynamics Models are Invalid; 5.7 Conclusions; Chapter 6 Simulating Phenomenaof General Relativity; 6.1 Some Basic Concepts; 6.2 The Simulation Tool and Model Time; 6.3 Simulation Experiments; 6.3.1 Relativistic Orbit; 6.3.2 Light Signals; 6.3.3 3D Light Cones; 6.3.4 Time Distortion