|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn890381744 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr mn||||||||| |
008 |
140911t20142014riua ob 100 0 eng d |
040 |
|
|
|a OSU
|b eng
|e rda
|e pn
|c OSU
|d UIU
|d OCLCA
|d LLB
|d OCLCF
|d OCLCO
|d YDXCP
|d OCL
|d OCLCO
|d EBLCP
|d OCLCO
|d DEBSZ
|d OCLCQ
|d OCLCO
|d OCLCQ
|d K6U
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 922981795
|
020 |
|
|
|a 9781470418878
|q (online)
|
020 |
|
|
|a 1470418878
|q (online)
|
020 |
|
|
|z 9781470410421
|q (alk. paper)
|
020 |
|
|
|z 1470410427
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000062344762
|
029 |
1 |
|
|a AU@
|b 000069467179
|
029 |
1 |
|
|a CHNEW
|b 000891907
|
029 |
1 |
|
|a CHVBK
|b 374510687
|
029 |
1 |
|
|a DEBBG
|b BV043623600
|
029 |
1 |
|
|a DEBSZ
|b 45255392X
|
035 |
|
|
|a (OCoLC)890381744
|z (OCoLC)922981795
|
050 |
|
4 |
|a QA278
|b .I585 2012eb
|
082 |
0 |
4 |
|a 519.5/35
|2 23
|
049 |
|
|
|a UAMI
|
111 |
2 |
|
|a International Workshop on Perspectives on High-Dimensional Data Analysis
|n (2nd :
|d 2012 :
|c Montréal, Québec)
|
245 |
1 |
0 |
|a Perspectives on big data analysis :
|b methodologies and applications : International Workshop on Perspectives on High-Dimension Data Anlaysis II, May 30-June 1, 2012, Centre de Recherches Mathématiques, Université de Montréal, Montréal /
|c S. Ejaz Ahmed, editor.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society ;
|a Montréal, Québec, Canada :
|b Centre de Recherches Mathématiques,
|c [2014]
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (xi, 191 pages) :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Contemporary mathematics,
|x 0271-4132 ;
|v 622
|
490 |
1 |
|
|a Centre de Recherches Mathématiques proceedings
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
0 |
|t Principal Component Analysis (PCA) for high-dimensional data. PCA is dead. Long live PCA /
|r Fan Yang, Kjell Doksum and Kam-Wah Tsui --
|u http://www.ams.org/conm/622/
|u http://dx.doi.org/10.1090/conm/622/12430
|t Solving a System of High-Dimensional Equations by MCMC /
|r Nozer D. Singpurwalla and Joshua Landon --
|u http://www.ams.org/conm/622/
|u http://dx.doi.org/10.1090/conm/622/12437
|t A slice sampler for the hierarchical Poisson/Gamma random field model /
|r Jian Kang and Timothy D. Johnson --
|u http://www.ams.org/conm/622/
|u http://dx.doi.org/10.1090/conm/622/12434
|t A new penalized quasi-likelihood approach for estimating the number of states in a hidden Markov model /
|r Annaliza McGillivray and Abbas Khalili --
|u http://www.ams.org/conm/622/
|u http://dx.doi.org/10.1090/conm/622/12435
|t Efficient adaptive estimation strategies in high-dimensional partially linear regression models /
|r Xiaoli Gao and S. Ejaz Ahmed --
|u http://www.ams.org/conm/622/
|u http://dx.doi.org/10.1090/conm/622/12441
|t Geometry and properties of generalized ridge regression in high dimensions /
|r Hemant Ishwaran and J. Sunil Rao --
|u http://www.ams.org/conm/622/
|u http://dx.doi.org/10.1090/conm/622/12438
|t Multiple testing for high-dimensional data /
|r Guoqing Diao, Bret Hanlon and Anand N. Vidyashankar --
|u http://www.ams.org/conm/622/
|u http://dx.doi.org/10.1090/conm/622/12440
|t On multiple contrast tests and simultaneous confidence intervals in high-dimensional repeated measures designs /
|r Frank Konietschke, Yulia R. Gel and Edgar Brunner --
|u http://www.ams.org/conm/622/
|u http://dx.doi.org/10.1090/conm/622/12431
|t Data-driven smoothing can preserve good asymptotic properties /
|r Zhouwang Yang, Huizhi Xie and Xiaoming Huo --
|u http://www.ams.org/conm/622/
|u http://dx.doi.org/10.1090/conm/622/12433
|t Variable selection for ultra-high-dimensional logistic models /
|r Pang Du, Pan Wu and Hua Liang --
|u http://www.ams.org/conm/622/
|u http://dx.doi.org/10.1090/conm/622/12436
|t Shrinkage estimation and selection for a logistic regression model /
|r Shakhawat Hossain and S. Ejaz Ahmed --
|u http://www.ams.org/conm/622/
|u http://dx.doi.org/10.1090/conm/622/12432
|t Manifold unfolding by Isometric Patch Alignment with an application in protein structure determination /
|r Pooyan Khajehpour Tadavani, Babak Alipanahi and Ali Ghodsi --
|u http://www.ams.org/conm/622/
|u http://dx.doi.org/10.1090/conm/622/12429
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Multivariate analysis
|v Congresses.
|
650 |
|
0 |
|a Artificial intelligence
|v Congresses.
|
650 |
|
0 |
|a Big data
|v Congresses.
|
650 |
|
6 |
|a Analyse multivariée
|v Congrès.
|
650 |
|
6 |
|a Intelligence artificielle
|v Congrès.
|
650 |
|
6 |
|a Données volumineuses
|v Congrès.
|
650 |
|
7 |
|a Artificial intelligence
|2 fast
|
650 |
|
7 |
|a Big data
|2 fast
|
650 |
|
7 |
|a Multivariate analysis
|2 fast
|
655 |
|
7 |
|a Conference papers and proceedings
|2 fast
|
700 |
1 |
|
|a Ahmed, S. E.
|q (Syed Ejaz),
|d 1957-
|e editor,
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjv4GYFkhGDfDVVhCb8dXq
|
776 |
0 |
8 |
|i Print version:
|a International Workshop on Perspectives on High-Dimension Data Anlaysis (2nd : 2012 : Montréal, Québec).
|t Perspectives on big data analysis.
|d Providence, Rhode Island : American Mathematical Society ; Montréal, Québec, Canada : Centre de Recherches Mathématiques, [2014]
|z 9781470410421
|w (DLC) 2014000814
|w (OCoLC)867916794
|
830 |
|
0 |
|a Contemporary mathematics (American Mathematical Society) ;
|v v. 622.
|
830 |
|
0 |
|a Contemporary mathematics (American Mathematical Society).
|p Centre de recherches mathématiques proceedings.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3114333
|z Texto completo
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3114333
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12372036
|
994 |
|
|
|a 92
|b IZTAP
|