|
|
|
|
LEADER |
00000cam a2200000 4500 |
001 |
EBOOKCENTRAL_ocn890070869 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n|---||||| |
008 |
140904s2014 gw ob 001 0 eng d |
040 |
|
|
|a MHW
|b eng
|e pn
|c MHW
|d EBLCP
|d OCLCO
|d E7B
|d DEBSZ
|d CCO
|d OCLCO
|d OCLCF
|d OCLCQ
|d UAB
|d COCUF
|d MOR
|d PIFBY
|d ZCU
|d MERUC
|d OCLCQ
|d DEGRU
|d U3W
|d STF
|d OCLCQ
|d ICG
|d INT
|d OCLCQ
|d WYU
|d TKN
|d OCLCQ
|d DKC
|d AU@
|d OCLCQ
|d UKAHL
|d OCLCQ
|d COO
|d OCLCQ
|d TUHNV
|d OCLCO
|d OCLCQ
|d N$T
|d OCLCO
|
020 |
|
|
|a 9783110368291
|
020 |
|
|
|a 3110368293
|
020 |
|
|
|a 3110271788
|
020 |
|
|
|a 9783110271782
|q (electronic bk.)
|
020 |
|
|
|z 9783110271379
|q (hbk.)
|
020 |
|
|
|z 3110271370
|q (hbk.)
|
029 |
1 |
|
|a DEBBG
|b BV044062209
|
029 |
1 |
|
|a DEBSZ
|b 431130531
|
035 |
|
|
|a (OCoLC)890070869
|
050 |
|
4 |
|a QA372 .V322 2014
|
082 |
0 |
4 |
|a 530.155355
|
084 |
|
|
|a UF 4000
|2 rvk
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Prasad, Kerehalli V.
|
245 |
1 |
0 |
|a Keller-Box Method and Its Application.
|
260 |
|
|
|a Berlin :
|b De Gruyter,
|c 2014.
|
300 |
|
|
|a 1 online resource (414 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a De Gruyter Studies in Mathematical Physics ;
|v v. 8
|
588 |
0 |
|
|a Print version record.
|
520 |
|
|
|a Most of the problems arising in science and engineering are nonlinear. They are inherently difficult to solve. Traditional analytical approximations are valid only for weakly nonlinear problems, and often break down for problems with strong nonlinearity. This book presents the current theoretical developments and applications of Keller-Box method to nonlinear problems. The first half of the bookaddresses basic concepts to understand the theoretical framework for the method. In the second half of the book, the authorsgive a number of examples of coupled nonlinear problems that have been solved.
|
505 |
0 |
|
|a Basics of the finite difference approximations -- Principles of the implicit Keller-box method -- Stability and convergence of the implicit Keller-box method -- Application of the Keller-box method to boundary layer problems -- Application of the Keller-box method to fluid flow and heat transfer problems -- Application of the Keller-box method to more advanced problems.
|
504 |
|
|
|a Includes bibliographical references and index.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Differential equations, Nonlinear
|x Numerical solutions.
|
650 |
|
0 |
|a Finite differences.
|
650 |
|
0 |
|a Nonlinear boundary value problems.
|
650 |
|
0 |
|a Fluid mechanics.
|
650 |
|
6 |
|a Équations différentielles non linéaires
|x Solutions numériques.
|
650 |
|
6 |
|a Différences finies.
|
650 |
|
6 |
|a Problèmes aux limites non linéaires.
|
650 |
|
6 |
|a Mécanique des fluides.
|
650 |
|
7 |
|a SCIENCE / Physics / Mathematical & Computational.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations, Nonlinear
|x Numerical solutions
|2 fast
|
650 |
|
7 |
|a Finite differences
|2 fast
|
650 |
|
7 |
|a Fluid mechanics
|2 fast
|
650 |
|
7 |
|a Nonlinear boundary value problems
|2 fast
|
700 |
1 |
|
|a Vajravelu, Kuppalapalle.
|
776 |
0 |
8 |
|i Print version:
|z 9783110271379
|
830 |
|
0 |
|a De Gruyter studies in mathematical physics.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=894052
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26342538
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH25311983
|
938 |
|
|
|a De Gruyter
|b DEGR
|n 9783110271782
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL894052
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr11006493
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 809394
|
994 |
|
|
|a 92
|b IZTAP
|