Cargando…

Beyond the Quadratic /

The quadratic formula for the solution of quadratic equations was discovered independently by scholars in many ancient cultures and is familiar to everyone. Less well known are formulas for solutions of cubic and quartic equations whose discovery was the high point of 16th century mathematics. Their...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Irving, Ron
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge : Cambridge University Press, 2013.
Colección:Classroom resource materials.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Ma 4500
001 EBOOKCENTRAL_ocn889955329
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |||||||||||
008 130612s2013 enk o 001 0 eng d
040 |a EUX  |b eng  |e pn  |c EUX  |d OCLCQ  |d EBLCP  |d OCLCQ  |d ZCU  |d MERUC  |d ICG  |d OCLCF  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d DKC  |d OCLCQ  |d OCLCA  |d OCLCQ  |d RDF  |d OCLCO  |d OCLCQ  |d OCLCO  |d HF9  |d OCLCL 
019 |a 939263616 
020 |a 9781614441120  |q (ebook) 
020 |a 161444112X  |q (ebook) 
029 1 |a DEBBG  |b BV043624292 
035 |a (OCoLC)889955329  |z (OCoLC)939263616 
050 4 |a QA445 ǂb I78 2013eb 
082 0 4 |a 512 
049 |a UAMI 
100 1 |a Irving, Ron. 
245 1 0 |a Beyond the Quadratic /  |c Ron Irving. 
260 |a Cambridge :  |b Cambridge University Press,  |c 2013. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Classroom Resource Materials 
500 |a Title from publishers bibliographic system (viewed on 11 Apr 2014). 
505 0 |a Front cover ; copyright page ; title page ; Preface; Contents; Polynomials; Definitions; Multiplication and Degree; Factorization and Roots; Bounding the Number of Roots; Real Numbers and the Intermediate Value Theorem; Graphs; Quadratic Polynomials; Sums and Products; Completing the Square; Changing Variables; A Discriminant; History; Cubic Polynomials; Reduced Cubics; Cardano's Formula; Graphs; A Discriminant; History; Complex Numbers; Complex Numbers; Quadratic Polynomials and the Discriminant; Square and Cube Roots; The Complex Plane; A Geometric Interpretation of Multiplication. 
505 8 |a Euler's and de Moivre's FormulasRoots of Unity; Converting Root Extraction to Division; History; Cubic Polynomials, II; Cardano's formula; The Resolvent; The Discriminant; Cardano's Formula Refined; The Irreducible Case; Viète's Formula; The Signs of the Real Roots; History; Quartic Polynomials; Reduced Quartics; Ferrari's Method; Descartes' Method; Euler's Formula; The Discriminant; The Nature of the Roots; Cubic and Quartic Reprise; History; Higher-Degree Polynomials; Quintic Polynomials; The Fundamental Theorem of Algebra; Polynomial Factorization; Symmetric Polynomials. 
505 8 |a A Proof of the Fundamental TheoremReferences; Index; About the Author. 
520 |a The quadratic formula for the solution of quadratic equations was discovered independently by scholars in many ancient cultures and is familiar to everyone. Less well known are formulas for solutions of cubic and quartic equations whose discovery was the high point of 16th century mathematics. Their study forms the heart of this book, as part of the broader theme that a polynomial's coefficients can be used to obtain detailed information on its roots. A closing chapter offers glimpses into the theory of higher-degree polynomials, concluding with a proof of the fundamental theorem of algebra. The book also includes historical sections designed to reveal key discoveries in the study of polynomial equations as milestones in intellectual history across cultures. Beyond the Quadratic Formula is designed for self-study, with many results presented as exercises and some supplemented by outlines for solution. The intended audience includes in-service and prospective secondary mathematics teachers, high school students eager to go beyond the standard curriculum, undergraduates who desire an in-depth look at a topic they may have unwittingly skipped over, and the mathematically curious who wish to do some work to unlock the mysteries of this beautiful subject. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Geometry. 
650 6 |a Géométrie. 
650 7 |a geometry.  |2 aat 
650 7 |a Geometry  |2 fast 
758 |i has work:  |a Beyond the Quadratic (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCXFrc37q4d4HXmXmrB4BxC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Irving, Ron.  |t Beyond the Quadratic Formula.  |d Washington : Mathematical Association of America, ©2014  |z 9780883857830 
830 0 |a Classroom resource materials. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3330361  |z Texto completo 
938 |a EBL - Ebook Library  |b EBLB  |n EBL3330361 
994 |a 92  |b IZTAP