Linear Algebra Problem Book /
Linear Algebra Problem Book can be either the main course or the dessert for someone who needs linear algebra ;and nowadays that means every user of mathematics. It can be used as the basis of either an official course or a program of private study. If used as a course, the book can stand by itself,...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Cambridge University Press,
2013.
|
Colección: | Dolciani mathematical expositions.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Linear Algebra Problem Book
- copyright page
- Preface
- Contents
- 1 SCALARS
- 1. Double addition
- 2. Half double addition
- 3. Exponentiation
- 4. Complex numbers
- 5. Affine transformations
- 6. Matrix multiplication
- 7. Modular multiplication
- 8. Small operations
- 9. Identity elements
- 10. Complex inverses
- 11. Affine inverses
- 12. Matrix inverses
- 13. Abelian groups
- 14. Groups
- 15. Independent group axioms
- 16. Fields
- 17. Addition and multiplication in fields
- 18. Distributive failure
- 19. Finite fields2 VECTORS
- 20. Vector spaces
- 21. Examples
- 22. Linear combinations
- 23. Subspaces
- 24. Unions of subspaces
- 25. Spans
- 26. Equalities of spans
- 27. Some special spans
- 28. Sums of subspaces
- 29. Distributive subspaces
- 30. Total sets
- 31. Dependence
- 32. Independence
- 3 BASES
- 33. Exchanging bases
- 34. Simultaneous complements
- 35. Examples of independence
- 36. Independence over R and Q
- 37. Independence in C^2
- 38. Vectors common to different bases
- 39. Bases in C^3
- 40. Maximal independent sets41. Complex as real
- 42. Subspaces of full dimension
- 43. Extended bases
- 44. Finite-dimensional subspaces
- 45. Minimal total sets
- 46. Existence of minimal total sets
- 47. Infinitely total sets
- 48. Relatively independent sets
- 49. Number of bases in a finite vector space
- 50. Direct sums
- 51. Quotient spaces
- 52. Dimension of a quotient space
- 53. Additivity of dimension
- 4 TRANSFORMATIONS
- 54. Linear transformations
- 55. Domain and range
- 56. Kernel
- 57. Composition
- 58. Range inclusion and factorization59. Transformations as vectors
- 60. Invertibility
- 61. Invertibility examples
- 62. Determinants: 2Ã? 2
- 63. Determinants: n Ã?n
- 64. Zero-one matrices
- 65. Invertible matrix bases
- 66. Finite-dimensional invertibility
- 67. Matrices
- 68. Diagonal matrices
- 69. Universal commutativity
- 70. Invariance
- 71. Invariant complements
- 72. Projections
- 73. Sums of projections
- 74. Not quite idempotence
- 5 DUALITY
- 75. Linear functionals
- 76. Dual spaces
- 77. Solution of equations
- 78. Reflexivity79. Annihilators
- 80. Double annihilators
- 81. Adjoints
- 82. Adjoints of projections
- 83. Matrices of adjoints
- 6 SIMILARITY
- 84. Change of basis: vectors
- 85. Change of basis: coordinates
- 86. Similarity: transformations
- 87. Similarity: matrices
- 88. Inherited similarity
- 89. Similarity: real and complex
- 90. Rank and nullity
- 91. Similarity and rank
- 92. Similarity of transposes
- 93. Ranks of sums
- 94. Ranks of products
- 95. Nullities of sums and products
- 96. Some similarities