Cavitation : a novel energy-efficient technique for the generation of nanomaterials /
As nanomaterials and their end products occupy the pinnacle position of consumer markets, it becomes vital to analyze their generation processes. One of the green chemistry principles underlines the need for unusual energy sources to generate them. Utilizing the extreme energy from the collapse of c...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Boca Raton, Florida :
CRC Press,
2014.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Contents; Foreword; Preface; 1. Development of Multifunctional Nanomaterials by Cavitation; 2. Generation of Size, Structure, and Shape-Controlled Metal Nanoparticles Using Cavitation; 3. Sonochemical Synthesis of Noble Monometallic and Bimetallic Nanoparticles for Catalytic Applications; 4. Ultrasound-Assisted Synthesis of Metal Oxide Nanomaterials; 5. Synthesis of Nanomaterials Using Hydrodynamic Cavitation; 6. Sonoelectrochemical Synthesis of Nanomaterials; 7. Preparation of Nanomaterials Under Combined Ultrasound/Microwave Irradiation.
- 8. Ultrasound-Assisted Preparation of Nanopolymeric and Micropolymeric Materials for the Encapsulation of Bioactive Agents9. Innovative Inorganic Nanoparticles with Antimicrobial Properties Attached to Textiles by Sonochemistry; 10. Ultrasonic Processing for Synthesis of Nanocomposite via in situ Emulsion Polymerization and Their Applications; 11. Controlled Sonochemical Fabrication of Mesoporous Surfaces and Metal Sponges; 12. Numerical Simulations of Nucleation and Aggregation of BaTiO3 Nanocrystals Under Ultrasound; 13. Ultrasonics and Sonochemistry: Some Issues and Future Perspectives.