Cargando…

Introduction to Mixed Modelling : Beyond Regression and Analysis of Variance.

This book first introduces the criterion of REstricted Maximum Likelihood (REML) for the fitting of a mixed model to data before illustrating how to apply mixed model analysis to a wide range of situations, how to estimate the variance due to each random-effect term in the model, and how to obtain a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Galwey, Nick
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Hoboken : Wiley, 2014.
Edición:2nd ed.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn887507303
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cnu---unuuu
008 140816s2014 nju ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MHW  |d DG1  |d E7B  |d DEBSZ  |d OCLCQ  |d CHVBK  |d OHI  |d OCLCF  |d OCLCQ  |d DEBBG  |d OCLCQ  |d K6U  |d OCLCQ  |d DG1  |d OCLCQ  |d LIP  |d PIFFA  |d FVL  |d ZCU  |d MERUC  |d U3W  |d OCLCQ  |d STF  |d ICG  |d INT  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCO  |d OCLCQ  |d UKAHL  |d OL$  |d OCLCQ  |d WURST  |d TUHNV  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d SFB 
019 |a 992855307  |a 1122606555 
020 |a 9781118861769  |q (electronic bk.) 
020 |a 1118861760  |q (electronic bk.) 
020 |z 9781118861813 
020 |z 1118861817 
020 |z 9781119945499 
029 1 |a AU@  |b 000056007442 
029 1 |a CHBIS  |b 010259823 
029 1 |a CHDSB  |b 006318857 
029 1 |a CHNEW  |b 000667521 
029 1 |a CHNEW  |b 000688006 
029 1 |a CHNEW  |b 000688007 
029 1 |a CHNEW  |b 000888401 
029 1 |a CHNEW  |b 000943459 
029 1 |a CHSLU  |b 001174744 
029 1 |a CHVBK  |b 327822074 
029 1 |a CHVBK  |b 480236828 
029 1 |a DEBBG  |b BV043397065 
029 1 |a DEBBG  |b BV043611454 
029 1 |a DEBSZ  |b 414083059 
029 1 |a DEBSZ  |b 449441342 
029 1 |a DEBSZ  |b 485051400 
035 |a (OCoLC)887507303  |z (OCoLC)992855307  |z (OCoLC)1122606555 
050 4 |a QA276 
082 0 4 |a 519.5  |2 23 
049 |a UAMI 
100 1 |a Galwey, Nick. 
245 1 0 |a Introduction to Mixed Modelling :  |b Beyond Regression and Analysis of Variance. 
250 |a 2nd ed. 
260 |a Hoboken :  |b Wiley,  |c 2014. 
300 |a 1 online resource (504 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright; Contents; Preface; Chapter 1 The need for more than one random-effect term when fitting a regression line; 1.1 A data set with several observations of variable Y at each value of variable X; 1.2 Simple regression analysis: Use of the software GenStat to perform the analysis; 1.3 Regression analysis on the group means; 1.4 A regression model with a term for the groups; 1.5 Construction of the appropriate F test for the significance of the explanatory variable when groups are present; 1.6 The decision to specify a model term as random: A mixed model. 
505 8 |a 1.7 Comparison of the tests in a mixed model with a test of lack of fit; 1.8 The use of REsidual Maximum Likelihood (REML) to fit the mixed model; 1.9 Equivalence of the different analyses when the number of observations per group is constant; 1.10 Testing the assumptions of the analyses: Inspection of the residual values; 1.11 Use of the software R to perform the analyses; 1.12 Use of the software SAS to perform the analyses; 1.13 Fitting a mixed model using GenStat's Graphical User Interface (GUI); 1.14 Summary; 1.15 Exercises; References. 
505 8 |a Chapter 2 The need for more than one random-effect term in a designed experiment; 2.1 The split plot design: A design with more than one random-effect term; 2.2 The analysis of variance of the split plot design: A random-effect term for the main plots; 2.3 Consequences of failure to recognize the main plots when analysing the split plot design; 2.4 The use of mixed modelling to analyse the split plot design; 2.5 A more conservative alternative to the F and Wald statistics; 2.6 Justification for regarding block effects as random. 
505 8 |a 2.7 Testing the assumptions of the analyses: Inspection of the residual values; 2.8 Use of R to perform the analyses; 2.9 Use of SAS to perform the analyses; 2.10 Summary; 2.11 Exercises; References; Chapter 3 Estimation of the variances of random-effect terms; 3.1 The need to estimate variance components; 3.2 A hierarchical random-effects model for a three-stage assay process; 3.3 The relationship between variance components and stratum mean squares; 3.4 Estimation of the variance components in the hierarchical random-effects model; 3.5 Design of an optimum strategy for future sampling. 
505 8 |a 3.6 Use of R to analyse the hierarchical three-stage assay process; 3.7 Use of SAS to analyse the hierarchical three-stage assay process; 3.8 Genetic variation: A crop field trial with an unbalanced design; 3.9 Production of a balanced experimental design by `padding'' with missing values; 3.10 Specification of a treatment term as a random-effect term: The use of mixed-model analysis to analyse an unbalanced data set; 3.11 Comparison of a variance component estimate with its standard error; 3.12 An alternative significance test for variance components. 
505 8 |a 3.13 Comparison among significance tests for variance components. 
520 |a This book first introduces the criterion of REstricted Maximum Likelihood (REML) for the fitting of a mixed model to data before illustrating how to apply mixed model analysis to a wide range of situations, how to estimate the variance due to each random-effect term in the model, and how to obtain and interpret Best Linear Unbiased Predictors (BLUPs) estimates of individual effects that take account of their random nature. It is intended to be an introductory guide to a relatively advanced specialised topic, and to convince the reader that mixed modelling is neither so specia. 
504 |a Includes bibliographical references at the end of each chapters and index. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Multilevel models (Statistics) 
650 0 |a Experimental design. 
650 0 |a Regression analysis. 
650 0 |a Analysis of variance. 
650 6 |a Modèles multiniveaux (Statistique) 
650 6 |a Plan d'expérience. 
650 6 |a Analyse de régression. 
650 6 |a Analyse de variance. 
650 7 |a Analysis of variance  |2 fast 
650 7 |a Experimental design  |2 fast 
650 7 |a Multilevel models (Statistics)  |2 fast 
650 7 |a Regression analysis  |2 fast 
650 7 |a Gemischtes Modell  |2 gnd 
650 7 |a Varianzanalyse  |2 gnd 
650 7 |a Regressionsanalyse  |2 gnd 
653 0 0 |a regressieanalyse 
653 0 0 |a regression analysis 
653 0 0 |a analysis of variance 
653 0 0 |a modelleren 
653 0 0 |a modeling 
653 1 0 |a Analysis of Variance 
653 2 0 |a Mathematical Models, Simulation Models 
653 1 0 |a Variantie-analyse 
653 2 0 |a Wiskundige modellen, simulatiemodellen 
655 0 |a Electronic books. 
758 |i has work:  |a Introduction to mixed modelling (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFwBQWwMk7BgwF6RpH3Fw3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Galwey, N.W.  |t Introduction to Mixed Modelling : Beyond Regression and Analysis of Variance.  |d Hoboken : Wiley, ©2014  |z 9781119945499 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1765090  |z Texto completo 
936 |a BATCHLOAD 
938 |a Askews and Holts Library Services  |b ASKH  |n AH27080386 
938 |a Askews and Holts Library Services  |b ASKH  |n AH26953688 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1765090 
938 |a ebrary  |b EBRY  |n ebr10907567 
994 |a 92  |b IZTAP