Automorphisms of manifolds and algebraic K-theory /
The structure space \mathcal{S}(M) of a closed topological m-manifold M classifies bundles whose fibers are closed m-manifolds equipped with a homotopy equivalence to M. The authors construct a highly connected map from \mathcal{S}(M) to a concoction of algebraic L-theory and algebraic K-theory spac...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
2014-
|
Colección: | Memoirs of the American Mathematical Society, 0065-9266 ;
volume 231, number 1084 |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Chapter 1. Introduction Chapter 2. Outline of proof Chapter 3. Visible $L$-theory revisited Chapter 4. The hyperquadratic $L$-theory of a point Chapter 5. Excision and restriction in controlled $L$-theory Chapter 6. Control and visible $L$-theory Chapter 7. Control, stabilization and change of decoration Chapter 8. Spherical fibrations and twisted duality Chapter 9. Homotopy invariant characteristics and signatures Chapter 10. Excisive characteristics and signatures Chapter 11. Algebraic approximations to structure spaces: Set-up Chapter 12. Algebraic approximations to structure spaces: Constructions Chapter 13. Algebraic models for structure spaces: Proofs Appendix A. Homeomorphism groups of some stratified spaces Appendix B. Controlled homeomorphism groups Appendix C. $K$-theory of pairs and diagrams Appendix D. Corrections and Elaborations.