Cargando…

Bayesian networks for probabilistic inference and decision analysis in forensic science /

""This book should have a place on the bookshelf of every forensic scientist who cares about the science of evidence interpretation""Dr. Ian Evett, Principal Forensic Services Ltd, London, UK Continuing developments in science and technology mean that the amounts of information f...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Taroni, Franco (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Chichester, England : Wiley, 2014.
Colección:Statistics in practice.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn884587620
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 140717t20142014enka ob 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d YDXCP  |d COO  |d EBLCP  |d DEBSZ  |d OCLCQ  |d COCUF  |d MOR  |d CCO  |d PIFAG  |d ZCU  |d MERUC  |d OCLCQ  |d U3W  |d STF  |d ICG  |d INT  |d VT2  |d OCLCQ  |d TKN  |d OCLCQ  |d DKC  |d OCLCQ  |d RDF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL 
019 |a 883570248  |a 961648668  |a 962630658 
020 |a 9781118914755  |q (e-book) 
020 |a 1118914759  |q (e-book) 
020 |a 0470979739 
020 |a 9780470979730 
020 |z 9780470979730 
029 1 |a CHNEW  |b 000692195 
029 1 |a CHNEW  |b 000692198 
029 1 |a CHNEW  |b 000888087 
029 1 |a DEBBG  |b BV043610598 
029 1 |a DEBSZ  |b 410557706 
029 1 |a DEBSZ  |b 42003661X 
029 1 |a DEBSZ  |b 431717648 
029 1 |a DEBSZ  |b 44943706X 
035 |a (OCoLC)884587620  |z (OCoLC)883570248  |z (OCoLC)961648668  |z (OCoLC)962630658 
050 4 |a QA279.5  |b .B394 2014eb 
082 0 4 |a 363.2501/519542  |2 23 
049 |a UAMI 
245 0 0 |a Bayesian networks for probabilistic inference and decision analysis in forensic science /  |c Franco Taroni [and four others]. 
264 1 |a Chichester, England :  |b Wiley,  |c 2014. 
264 4 |c ©2014 
300 |a 1 online resource (473 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Statistics in Practice 
504 |a Includes bibliographical references and indexes. 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright; Contents; Foreword; Preface to the second edition; Preface to the first edition; Chapter 1 The logic of decision; 1.1 Uncertainty and probability; 1.1.1 Probability is not about numbers, it is about coherent reasoning under uncertainty; 1.1.2 The first two laws of probability; 1.1.3 Relevance and independence; 1.1.4 The third law of probability; 1.1.5 Extension of the conversation; 1.1.6 Bayes' theorem; 1.1.7 Probability trees; 1.1.8 Likelihood and probability; 1.1.9 The calculus of (probable) truths; 1.2 Reasoning under uncertainty. 
505 8 |a 1.2.1 The Hound of the Baskervilles1.2.2 Combination of background information and evidence; 1.2.3 The odds form of Bayes' theorem; 1.2.4 Combination of evidence; 1.2.5 Reasoning with total evidence; 1.2.6 Reasoning with uncertain evidence; 1.3 Population proportions, probabilities and induction; 1.3.1 The statistical syllogism; 1.3.2 Expectations and population proportions; 1.3.3 Probabilistic explanations; 1.3.4 Abduction and inference to the best explanation; 1.3.5 Induction the Bayesian way; 1.4 Decision making under uncertainty; 1.4.1 Bookmakers in the Courtrooms?; 1.4.2 Utility theory. 
505 8 |a 1.4.3 The rule of maximizing expected utility1.4.4 The loss function; 1.4.5 Decision trees; 1.4.6 The expected value of information; 1.5 Further readings; Chapter 2 The logic of Bayesian networks and influence diagrams; 2.1 Reasoning with graphical models; 2.1.1 Beyond detective stories; 2.1.2 Bayesian networks; 2.1.3 A graphical model for relevance; 2.1.4 Conditional independence; 2.1.5 Graphical models for conditional independence: d-separation; 2.1.6 A decision rule for conditional independence; 2.1.7 Networks for evidential reasoning; 2.1.8 The Markov property; 2.1.9 Influence diagrams. 
505 8 |a 2.1.10 Conditional independence in influence diagrams2.1.11 Relevance and causality; 2.1.12 The Hound of the Baskervilles revisited; 2.2 Reasoning with Bayesian networks and influence diagrams; 2.2.1 Divide and conquer; 2.2.2 From directed to triangulated graphs; 2.2.3 From triangulated graphs to junction trees; 2.2.4 Solving influence diagrams; 2.2.5 Object-oriented Bayesian networks; 2.2.6 Solving object-oriented Bayesian networks; 2.3 Further readings; 2.3.1 General; 2.3.2 Bayesian networks and their predecessors in judicial contexts. 
505 8 |a Chapter 3 Evaluation of scientific findings in forensic science3.1 Introduction; 3.2 The value of scientific findings; 3.3 Principles of forensic evaluation and relevant propositions; 3.3.1 Source level propositions; 3.3.1.1 Notation; 3.3.1.2 Single stain; 3.3.2 Activity level propositions; 3.3.2.1 Notation and formulaic development; 3.3.3 Crime level propositions; 3.3.3.1 Notation; 3.3.3.2 Association propositions; 3.3.3.3 Intermediate association propositions; 3.4 Pre-assessment of the case; 3.5 Evaluation using graphical models; 3.5.1 Introduction. 
520 |a ""This book should have a place on the bookshelf of every forensic scientist who cares about the science of evidence interpretation""Dr. Ian Evett, Principal Forensic Services Ltd, London, UK Continuing developments in science and technology mean that the amounts of information forensic scientists are able to provide for criminal investigations is ever increasing. The commensurate increase in complexity creates difficulties for scientists and lawyers with regard to evaluation and interpretation, notably with respect to issues of inference and decision. Probability t. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Bayesian statistical decision theory  |x Graphic methods. 
650 0 |a Uncertainty (Information theory)  |x Graphic methods. 
650 0 |a Forensic sciences  |x Graphic methods. 
650 6 |a Théorie de la décision bayésienne  |x Méthodes graphiques. 
650 6 |a Incertitude (Théorie de l'information)  |x Méthodes graphiques. 
650 6 |a Criminalistique  |x Méthodes graphiques. 
700 1 |a Taroni, Franco,  |e author. 
758 |i has work:  |a Bayesian networks for probabilistic inference and decision analysis in forensic science (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGfk8v8fkd3PbFMvHVG8md  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Bayesian networks for probabilistic inference and decision analysis in forensic science.  |d Chichester, England : Wiley, ©2014  |h xxiv, 443 pages  |k Statistics in practice.  |z 9780470979730 
830 0 |a Statistics in practice. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1729556  |z Texto completo 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL1729556 
938 |a ebrary  |b EBRY  |n ebr10891186 
938 |a YBP Library Services  |b YANK  |n 11632340 
994 |a 92  |b IZTAP