Cargando…

A global formulation of the Lie theory of transportation groups /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Palais, Richard S. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, RI : American Mathematical Society, [1957]
Colección:Memoirs of the American Mathematical Society ; no. 22.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Contents
  • Preface
  • Acknowledgments
  • Chapter I: QUOTIENT MANIFOLDS DEFINED BY FOLIATIONS
  • 1. Differentiable Manifolds
  • 2. Foliations
  • 3. The Continuation Theorem
  • 4. Regularity
  • 5. Quotient Manifolds
  • 6. Factorization of Mappings
  • 7. Projection-like Mappings
  • 8. The Uniqueness Theorem
  • 9. Products of Quotient Manifolds
  • Chapter II: LOCAL AND INFINITESIMAL TRANSFORMATION GROUPS
  • 1. Notation
  • 2. Elementary Definitions
  • 3. 'Factoring' a Transformation Group
  • 4. The Infinitesimal Graph
  • 5. The Local Existence Theorem
  • 6. The Uniqueness Theorem7. The Existence Theorem
  • Chapter III: GLOBALIZABLE INFINITESIMAL TRANSFORMATION GROUPS
  • 1. Globalizations
  • 2. Univalent Infinitesimal Transformation Groups
  • 3. Maximum Local Transformation Groups
  • 4. The Principal Theorem
  • 5. Proper Infinitesimal Transformation Groups
  • 6. Uniform Infinitesimal Transformation Groups
  • 7. R-Transformation Groups
  • 8. The Need for Non-Hausdorff Manifolds
  • 9. Can Theorem XX Be Generalized?
  • Chapter IV: LIE TRANSFORMATION GROUPS
  • 1. Two Theorems on Lie Groups
  • 2. Infinitesimal Groups3. Connected Lie Transformation Groups
  • 4. Lie Transformation Groups
  • 5. Tensor Structures and Their Automorphism Groups
  • Appendix to Chapter IV
  • 1. Compact-Open Topology
  • 2. Making a Topology Locally Arcwise Connected
  • 3. The Modified Compact-Open Topology
  • 4. Weakening the Topology of a Lie Group
  • Terminological Index
  • A
  • C
  • F
  • G
  • H
  • I
  • K
  • L
  • M
  • N
  • P
  • Q
  • R
  • S
  • T
  • U
  • V
  • References
  • Fixed Notations