A global formulation of the Lie theory of transportation groups /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, RI :
American Mathematical Society,
[1957]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 22. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Contents
- Preface
- Acknowledgments
- Chapter I: QUOTIENT MANIFOLDS DEFINED BY FOLIATIONS
- 1. Differentiable Manifolds
- 2. Foliations
- 3. The Continuation Theorem
- 4. Regularity
- 5. Quotient Manifolds
- 6. Factorization of Mappings
- 7. Projection-like Mappings
- 8. The Uniqueness Theorem
- 9. Products of Quotient Manifolds
- Chapter II: LOCAL AND INFINITESIMAL TRANSFORMATION GROUPS
- 1. Notation
- 2. Elementary Definitions
- 3. 'Factoring' a Transformation Group
- 4. The Infinitesimal Graph
- 5. The Local Existence Theorem
- 6. The Uniqueness Theorem7. The Existence Theorem
- Chapter III: GLOBALIZABLE INFINITESIMAL TRANSFORMATION GROUPS
- 1. Globalizations
- 2. Univalent Infinitesimal Transformation Groups
- 3. Maximum Local Transformation Groups
- 4. The Principal Theorem
- 5. Proper Infinitesimal Transformation Groups
- 6. Uniform Infinitesimal Transformation Groups
- 7. R-Transformation Groups
- 8. The Need for Non-Hausdorff Manifolds
- 9. Can Theorem XX Be Generalized?
- Chapter IV: LIE TRANSFORMATION GROUPS
- 1. Two Theorems on Lie Groups
- 2. Infinitesimal Groups3. Connected Lie Transformation Groups
- 4. Lie Transformation Groups
- 5. Tensor Structures and Their Automorphism Groups
- Appendix to Chapter IV
- 1. Compact-Open Topology
- 2. Making a Topology Locally Arcwise Connected
- 3. The Modified Compact-Open Topology
- 4. Weakening the Topology of a Lie Group
- Terminological Index
- A
- C
- F
- G
- H
- I
- K
- L
- M
- N
- P
- Q
- R
- S
- T
- U
- V
- References
- Fixed Notations