Cargando…

A conformal mapping technique for infinitely connected regions /

Methods of classical analysis devised originally for the disc are here extended to more general plane regions by the use of Green's lines, the Green's mapping, and an ideal boundary structure generalizing the prime-end structure of Carathéodory. The regions admitted include all bounded fi...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Arsove, Maynard, 1922-, Johnson, Guy, Jr., 1922-2017 (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, 1970.
Colección:Memoirs of the American Mathematical Society ; no. 91.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn884584437
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 750508s1970 riua ob 000 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d EBLCP  |d OCLCF  |d OCLCQ  |d AU@  |d OCLCQ  |d TXI  |d OCLCO  |d OCL  |d OCLCO  |d VT2  |d OCLCO  |d OCLCQ  |d QGK  |d OCLCO  |d OCLCL 
019 |a 1259184664 
020 |a 9781470400415  |q (e-book) 
020 |a 1470400413  |q (e-book) 
020 |z 9780821812914 
035 |a (OCoLC)884584437  |z (OCoLC)1259184664 
050 4 |a QA360  |b .A77 1970eb 
082 0 4 |a 517.8  |q OCoLC 
049 |a UAMI 
100 1 |a Arsove, Maynard,  |d 1922- 
245 1 2 |a A conformal mapping technique for infinitely connected regions /  |c by Maynard G. Arsove and Guy Johnson, Jr. 
264 1 |a Providence :  |b American Mathematical Society,  |c 1970. 
300 |a 1 online resource (60 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v number 91 
504 |a Includes bibliographical references (page 56). 
505 0 0 |t Introduction --  |t Preliminaries --  |g I.  |t The Green's mapping ;  |t Green's arcs --  |t The reduced region and Green's mapping --  |t Green's lines --  |t Integrals and arc length in terms of Green's coordinates --  |t Regular Green's lines --  |t Green's measure and harmonic measure --  |t Boundary properties of harmonic and analytic functions --  |g II.  |t A generalized Poisson kernel and Poisson integral formula ;  |t A generalization of the Poisson kernel --  |t Properties of the generalized Poisson kernel --  |t The generalized Poisson integral --  |g III.  |t An invariant ideal boundary structure ;  |t Construction of the boundary and its topology --  |t Further properties of the boundary --  |t Conformal invariance of the ideal boundary structure --  |t Metrizability, separability, and compactness of [script]E --  |t Termination of Green's lines in ideal boundary points --  |t The Dirichlet problem in [script]E --  |t The shaded Dirichlet problem --  |t Introduction of the hypothesis [italic]m[italic subscript]z([script]S) =  |t 0. 
520 |a Methods of classical analysis devised originally for the disc are here extended to more general plane regions by the use of Green's lines, the Green's mapping, and an ideal boundary structure generalizing the prime-end structure of Carathéodory. The regions admitted include all bounded finitely connected regions, as well as a broad class of infinitely connected regions. Since certain modifications in the Brelot-Choquet theory are needed to allow for singular Green's lines, an independent development of the theory of Green's lines is given, based on properties of the Green's mapping. These techniques make possible the introduction of a generalized Poisson kernel and integral defined in terms of Green's lines. 
588 0 |a Print version record. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Conformal mapping. 
650 0 |a Poisson integral formula. 
650 0 |a Dirichlet problem. 
650 0 |a Boundary value problems. 
650 0 |a Mathematical analysis. 
650 6 |a Applications conformes. 
650 6 |a Problème de Dirichlet. 
650 6 |a Problèmes aux limites. 
650 6 |a Analyse mathématique. 
650 7 |a Poisson integral formula  |2 fast 
650 7 |a Mathematical analysis  |2 fast 
650 7 |a Dirichlet problem  |2 fast 
650 7 |a Boundary value problems  |2 fast 
650 7 |a Conformal mapping  |2 fast 
700 1 |a Johnson, Guy,  |c Jr.,  |d 1922-2017,  |e author. 
758 |i has work:  |a A conformal mapping technique for infinitely connected regions (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFXY7Wbvq99wBbp3wJCKMP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Arsove, Maynard, 1922-  |t Conformal mapping technique for infinitely connected regions.  |d Providence : American Mathematical Society, 1970  |h 56 ; 26 cm  |k Memoirs of the American Mathematical Society ; no. 91  |z 9780821812914 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 91. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113699  |z Texto completo 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3113699 
938 |a ebrary  |b EBRY  |n ebr10882358 
994 |a 92  |b IZTAP