A functional calculus for subnormal operators. II /
Let S be a subnormal operator on a Hilbert space [script]H with minimal normal extension [italic]N operating on [italic]K, and let [lowercase Greek]Mu be a scalar valued spectral measure for [italic]N. If [italic]P[infinity symbol]([lowercase Greek]Mu) denotes the weak star closure of the polynomial...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, R.I. :
American Mathematical Society,
[1977]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 184. |
Temas: | |
Acceso en línea: | Texto completo |
Sumario: | Let S be a subnormal operator on a Hilbert space [script]H with minimal normal extension [italic]N operating on [italic]K, and let [lowercase Greek]Mu be a scalar valued spectral measure for [italic]N. If [italic]P[infinity symbol]([lowercase Greek]Mu) denotes the weak star closure of the polynomials in [italic]L[infinity symbol]([lowercase Greek]Mu) = [italic]L¹[infinity symbol]([lowercase Greek]Mu) then for [script]f in [italic]P[infinity symbol]([lowercase Greek]Mu) it follows that [script]f([italic]N) leaves [script]H invariant; if [script]f([italic]S) is defined as the restriction of [script]f([italic]N) to [script]H then a functional calculus for [italic]S is obtained. This functional calculus is investigated in this paper. |
---|---|
Descripción Física: | 1 online resource (72 pages) |
Bibliografía: | Includes bibliographical references (pages 59-61). |
ISBN: | 9781470400507 1470400502 |
ISSN: | 0065-9266 ; |