|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn884584386 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
760115t19751975riu ob 000 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCO
|d EBLCP
|d OCLCF
|d OCLCQ
|d OCLCO
|d OCLCQ
|d AU@
|d TXI
|d OCLCQ
|d VT2
|d OCLCO
|d OCLCQ
|d QGK
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1259125257
|
020 |
|
|
|a 9781470405465
|q (e-book)
|
020 |
|
|
|a 1470405466
|q (e-book)
|
020 |
|
|
|z 0821818600
|
020 |
|
|
|z 9780821818602
|
035 |
|
|
|a (OCoLC)884584386
|z (OCoLC)1259125257
|
050 |
|
4 |
|a QA333
|b .N48 1975eb
|
082 |
0 |
4 |
|a 510/.8 s
|a 515/.73
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Neville, Charles W.
|
245 |
1 |
0 |
|a Invariant subspaces of Hardy classes on infinitely connected open surfaces /
|c Charles W. Neville.
|
264 |
|
1 |
|a Providence :
|b American Mathematical Society,
|c [1975]
|
264 |
|
4 |
|c Ã1975
|
300 |
|
|
|a 1 online resource (163 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society ;
|v volume 2, issue 1, number 160 (May 1975)
|
500 |
|
|
|a "Volume 2, issue 1."
|
504 |
|
|
|a Includes bibliographical references (pages 149-151).
|
505 |
0 |
0 |
|t Preliminaries --
|t L.A.M.'s, inner-outer factorizations --
|t The Banach algebra h[infinity symbol](R) --
|t An operational calculus, duality --
|t Admissible surfaces --
|t Cauchy-Read theorems --
|t The main theorem, counter-examples --
|t Construction of admissible surfaces.
|
520 |
|
|
|a We generalize Beurling's theorem on the shift invariant subspaces of Hard class H[superscript]2 of the unit disk to the Hardy classes of admissible Riemann surfaces. Essentially, an open Riemann surface is admissible if it admits enough bounded multiple valued analytic functions. The class of admissible surfaces contains many infinitely connected surfaces, and all finite surfaces, but does not contain all plane regions admitting sufficiently many bounded analytic functions to sseparatepoints. We generalize the ttheorem of A.H. Read and the Cauchy integral formula to the boundary values, on the Hayashi boundary, of functions in the Hardy classes of admissible surfaces.
|
588 |
0 |
|
|a Print version record.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Riemann surfaces.
|
650 |
|
0 |
|a Hardy classes.
|
650 |
|
0 |
|a Invariant subspaces.
|
650 |
|
0 |
|a Banach algebras.
|
650 |
|
6 |
|a Surfaces de Riemann.
|
650 |
|
6 |
|a Classes de Hardy.
|
650 |
|
6 |
|a Sous-espaces invariants.
|
650 |
|
7 |
|a Banach algebras
|2 fast
|
650 |
|
7 |
|a Hardy classes
|2 fast
|
650 |
|
7 |
|a Invariant subspaces
|2 fast
|
650 |
|
7 |
|a Riemann surfaces
|2 fast
|
758 |
|
|
|i has work:
|a Invariant subspaces of Hardy classes on infinitely connected open surfaces (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGW3WF3BqVPXRrWXKjTPwC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Neville, Charles W.
|t Invariant subspaces of Hardy classes on infinitely connected open surfaces.
|d Providence : American Mathematical Society, [1975]
|h viii, 151 ; 26 cm
|k Memoirs of the American Mathematical Society ; volume 2, issue 1, number 160 (May 1975)
|z 9780821818602
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 160.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113634
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3113634
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10882293
|
994 |
|
|
|a 92
|b IZTAP
|