Cargando…

Invariant subspaces of Hardy classes on infinitely connected open surfaces /

We generalize Beurling's theorem on the shift invariant subspaces of Hard class H[superscript]2 of the unit disk to the Hardy classes of admissible Riemann surfaces. Essentially, an open Riemann surface is admissible if it admits enough bounded multiple valued analytic functions. The class of a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Neville, Charles W.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, [1975]
Colección:Memoirs of the American Mathematical Society ; no. 160.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn884584386
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 760115t19751975riu ob 000 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d EBLCP  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d AU@  |d TXI  |d OCLCQ  |d VT2  |d OCLCO  |d OCLCQ  |d QGK  |d OCLCO  |d OCLCL 
019 |a 1259125257 
020 |a 9781470405465  |q (e-book) 
020 |a 1470405466  |q (e-book) 
020 |z 0821818600 
020 |z 9780821818602 
035 |a (OCoLC)884584386  |z (OCoLC)1259125257 
050 4 |a QA333  |b .N48 1975eb 
082 0 4 |a 510/.8 s  |a 515/.73 
049 |a UAMI 
100 1 |a Neville, Charles W. 
245 1 0 |a Invariant subspaces of Hardy classes on infinitely connected open surfaces /  |c Charles W. Neville. 
264 1 |a Providence :  |b American Mathematical Society,  |c [1975] 
264 4 |c Ã1975 
300 |a 1 online resource (163 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v volume 2, issue 1, number 160 (May 1975) 
500 |a "Volume 2, issue 1." 
504 |a Includes bibliographical references (pages 149-151). 
505 0 0 |t Preliminaries --  |t L.A.M.'s, inner-outer factorizations --  |t The Banach algebra h[infinity symbol](R) --  |t An operational calculus, duality --  |t Admissible surfaces --  |t Cauchy-Read theorems --  |t The main theorem, counter-examples --  |t Construction of admissible surfaces. 
520 |a We generalize Beurling's theorem on the shift invariant subspaces of Hard class H[superscript]2 of the unit disk to the Hardy classes of admissible Riemann surfaces. Essentially, an open Riemann surface is admissible if it admits enough bounded multiple valued analytic functions. The class of admissible surfaces contains many infinitely connected surfaces, and all finite surfaces, but does not contain all plane regions admitting sufficiently many bounded analytic functions to sseparatepoints. We generalize the ttheorem of A.H. Read and the Cauchy integral formula to the boundary values, on the Hayashi boundary, of functions in the Hardy classes of admissible surfaces. 
588 0 |a Print version record. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Riemann surfaces. 
650 0 |a Hardy classes. 
650 0 |a Invariant subspaces. 
650 0 |a Banach algebras. 
650 6 |a Surfaces de Riemann. 
650 6 |a Classes de Hardy. 
650 6 |a Sous-espaces invariants. 
650 7 |a Banach algebras  |2 fast 
650 7 |a Hardy classes  |2 fast 
650 7 |a Invariant subspaces  |2 fast 
650 7 |a Riemann surfaces  |2 fast 
758 |i has work:  |a Invariant subspaces of Hardy classes on infinitely connected open surfaces (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGW3WF3BqVPXRrWXKjTPwC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Neville, Charles W.  |t Invariant subspaces of Hardy classes on infinitely connected open surfaces.  |d Providence : American Mathematical Society, [1975]  |h viii, 151 ; 26 cm  |k Memoirs of the American Mathematical Society ; volume 2, issue 1, number 160 (May 1975)  |z 9780821818602 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 160. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113634  |z Texto completo 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3113634 
938 |a ebrary  |b EBRY  |n ebr10882293 
994 |a 92  |b IZTAP