Cargando…

Invariant subspaces of Hardy classes on infinitely connected open surfaces /

We generalize Beurling's theorem on the shift invariant subspaces of Hard class H[superscript]2 of the unit disk to the Hardy classes of admissible Riemann surfaces. Essentially, an open Riemann surface is admissible if it admits enough bounded multiple valued analytic functions. The class of a...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Neville, Charles W.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence : American Mathematical Society, [1975]
Colección:Memoirs of the American Mathematical Society ; no. 160.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:We generalize Beurling's theorem on the shift invariant subspaces of Hard class H[superscript]2 of the unit disk to the Hardy classes of admissible Riemann surfaces. Essentially, an open Riemann surface is admissible if it admits enough bounded multiple valued analytic functions. The class of admissible surfaces contains many infinitely connected surfaces, and all finite surfaces, but does not contain all plane regions admitting sufficiently many bounded analytic functions to sseparatepoints. We generalize the ttheorem of A.H. Read and the Cauchy integral formula to the boundary values, on the Hayashi boundary, of functions in the Hardy classes of admissible surfaces.
Notas:"Volume 2, issue 1."
Descripción Física:1 online resource (163 pages)
Bibliografía:Includes bibliographical references (pages 149-151).
ISBN:9781470405465
1470405466