|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn884584385 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
791228t19801980riua ob 000 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCO
|d EBLCP
|d OCLCF
|d OCLCQ
|d YDXCP
|d OCLCQ
|d AU@
|d TXI
|d OCLCQ
|d K6U
|d OCLCO
|d QGK
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 948374909
|a 1259151748
|
020 |
|
|
|a 9781470406318
|q (e-book)
|
020 |
|
|
|a 1470406314
|q (e-book)
|
020 |
|
|
|z 0821822276
|
020 |
|
|
|z 9780821822272
|
029 |
1 |
|
|a AU@
|b 000069528464
|
035 |
|
|
|a (OCoLC)884584385
|z (OCoLC)948374909
|z (OCoLC)1259151748
|
050 |
|
4 |
|a QA165
|b .B74 1980eb
|
082 |
0 |
4 |
|a 510 s
|a 512/.73
|2 19
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Bressoud, David M.,
|d 1950-
|e author.
|
245 |
1 |
0 |
|a Analytic and combinatorial generalizations of the Rogers-Ramanujan identities /
|c David M. Bressoud.
|
246 |
3 |
0 |
|a Rogers-Ramanujan identities
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c [1980]
|
264 |
|
4 |
|c ©1980
|
300 |
|
|
|a 1 online resource (59 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society ;
|v number 227
|
500 |
|
|
|a "Vol. 24, no. 227 (first of 3 numbers)."
|
504 |
|
|
|a Includes bibliographical references (pages 53-54).
|
505 |
0 |
|
|a Introduction -- The analytic identity -- Corollaries to Theorem 1 -- The combinatorial identity -- Interpretation of [italic]G₁, [subscript italic]k, r -- Two identities of Göllnitz -- Interpretation of [italic]G₂, ₂, ₂ -- Conclusion.
|
520 |
|
|
|a The Rogers-Ramanujan identities can be stated either analytically or combinatorially. Each viewpoint has led to its own generalizations. On the analytic side, there is the work of Watson, Bailey, Slater, Singh, Andrews and others. On the combinatorial side is the work of Schur, Gordon, Göllnitz, Andrews and others. In this paper, two very general theorems will be proved; the first of these is an analytic statement and contains as special cases many of the known analytic generalizations; the second is a combinatorial statement which contains as special cases many of the combinatorial generalizations. Most significantly, the connection between the analytic and combinatorial theorems will be demonstrated.
|
588 |
0 |
|
|a Print version record.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Partitions (Mathematics)
|
650 |
|
0 |
|a Generating functions.
|
650 |
|
0 |
|a Combinatorial identities.
|
650 |
|
0 |
|a Hypergeometric functions.
|
650 |
|
6 |
|a Partitions (Mathématiques)
|
650 |
|
6 |
|a Fonctions génératrices.
|
650 |
|
6 |
|a Identités combinatoires.
|
650 |
|
6 |
|a Fonctions hypergéométriques.
|
650 |
|
7 |
|a Combinatorial identities
|2 fast
|
650 |
|
7 |
|a Generating functions
|2 fast
|
650 |
|
7 |
|a Hypergeometric functions
|2 fast
|
650 |
|
7 |
|a Partitions (Mathematics)
|2 fast
|
758 |
|
|
|i has work:
|a Analytic and combinatorial generalizations of the Rogers-Ramanujan identities (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGYQDB3WbVxKVR8QHtyYpq
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Bressoud, David M.
|t Analytic and combinatorial generalizations of the Rogers-Ramanujan identities.
|d Providence, Rhode Island : American Mathematical Society, [1980]
|h 54 ; 26 cm
|k Memoirs of the American Mathematical Society ; no. 227
|z 9780821822272
|w (DLC) 10882289
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 227.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113630
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3113630
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10882289
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12303235
|
994 |
|
|
|a 92
|b IZTAP
|