Algebraic K-theory and localised stable homotopy theory /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, R.I., USA :
American Mathematical Society,
[1983]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 280. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Table of Contents
- Introduction
- Part I
- Stable homotopy preliminaries
- I.1: Localised stable homotopy
- I.2: Stable decomposition of some classifying spaces
- I.3: Evaluation of S[sup(S)][sub(*)]((BZ/p[sup(q))[sub(+)]
- Z/p[sup(a)]) [1/x]
- Part II
- First applications to algebraic K-theory
- II. 1: The homomorphism Þ[sub(A)]()
- II. 2: Examples
- localised stable homotopy of number rings, fields and group rings
- II. 3: Asymptotic behaviour in the algebraic K-theory of group rings
- Part III
- Localised equivariant stable homotopy.
- III. 1: The descent spectral sequence in localised equivariant stable homotopy
- III. 2: Some examples of representatives and differentials in the spectral sequence
- III. 3: Examples of the descent spectral sequence
- Part IV
- Further applications to algebraic K-theory
- IV. 1: Thomason's Cech construction, H(X
- F) and K[sup(top)][sub(*)](X)
- IV. 2: K-theory eventually surjects onto K[sup(top)] for local/global fields and their algebraic integers
- IV. 3: An upper bound for (Bott periodic) algebraic K-theory
- IV. 4: Bott periodic algebraic K-theory and the class group
- References.