Cargando…

Algebraic K-theory and localised stable homotopy theory /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Snaith, Victor P. (Victor Percy), 1944- (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, R.I., USA : American Mathematical Society, [1983]
Colección:Memoirs of the American Mathematical Society ; no. 280.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Table of Contents
  • Introduction
  • Part I
  • Stable homotopy preliminaries
  • I.1: Localised stable homotopy
  • I.2: Stable decomposition of some classifying spaces
  • I.3: Evaluation of S[sup(S)][sub(*)]((BZ/p[sup(q))[sub(+)]
  • Z/p[sup(a)]) [1/x]
  • Part II
  • First applications to algebraic K-theory
  • II. 1: The homomorphism Þ[sub(A)]()
  • II. 2: Examples
  • localised stable homotopy of number rings, fields and group rings
  • II. 3: Asymptotic behaviour in the algebraic K-theory of group rings
  • Part III
  • Localised equivariant stable homotopy.
  • III. 1: The descent spectral sequence in localised equivariant stable homotopy
  • III. 2: Some examples of representatives and differentials in the spectral sequence
  • III. 3: Examples of the descent spectral sequence
  • Part IV
  • Further applications to algebraic K-theory
  • IV. 1: Thomason's Cech construction, H(X
  • F) and K[sup(top)][sub(*)](X)
  • IV. 2: K-theory eventually surjects onto K[sup(top)] for local/global fields and their algebraic integers
  • IV. 3: An upper bound for (Bott periodic) algebraic K-theory
  • IV. 4: Bott periodic algebraic K-theory and the class group
  • References.