Cargando…

Hodge theory and the local Torelli problem /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tu, Loring W. (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, [1983]
Colección:Memoirs of the American Mathematical Society ; no. 279.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn884584306
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 830225t19831983riu ob 001 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d EBLCP  |d OCLCF  |d OCLCQ  |d AU@  |d OCLCQ  |d K6U  |d OCLCO  |d QGK  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1259277463 
020 |a 9781470406899  |q (e-book) 
020 |a 1470406896  |q (e-book) 
020 |z 0821822799  |q (pbk.) 
020 |z 9780821822791 
029 1 |a AU@  |b 000069391942 
035 |a (OCoLC)884584306  |z (OCoLC)1259277463 
050 4 |a QA565  |b .T85 1983eb 
082 0 4 |a 510 s  |a 516.3/52  |2 19 
049 |a UAMI 
100 1 |a Tu, Loring W.,  |e author. 
245 1 0 |a Hodge theory and the local Torelli problem /  |c Loring W. Tu. 
246 3 0 |a Torelli problem 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c [1983] 
264 4 |c ©1983 
300 |a 1 online resource (72 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v number 279 
504 |a Includes bibliographical references (pages 55-56) and index. 
588 0 |a Print version record. 
505 0 |a Table of Contents -- Introduction -- I. Variation of Hodge structure -- 1. The period map -- 2. The Hodge bundles in the smooth case -- 3. The Hodge bundles when there are singular fibers -- The log complex -- Relative dualizing sheaf -- The canonical extension -- 4. A multiplicative formula for the holomorphic Euler characteristic -- 5. Monodromy -- 6. Mixed Hodge structures and the numerical invariants of a degeneration -- 6.1. Varieties with normal crossings -- 6.2. The limiting mixed Hodge structure -- 6.3. The Clemens-Schmid exact sequence -- 6.4. Genus of a singular curve. 
505 8 |a II. Local Torelli for curves -- 7. The case of no singular fibers -- 8. With singular fibers -- 8.1. First proof: mixed Hodge structure and the topology of the singular fiber -- 8.2. Second proof: using the relative dualizing sheaf to map X into a projective space -- 8.3. Third proof: the ample cone on the moduli space M -- III. Local Torelli in higher dimensions -- 9. Surfaces with large irregularity -- 10. Threefolds and fourfolds with large irregularity -- Bibliography -- List of Notations -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- P -- Q -- R -- S -- T. 
505 8 |a U -- V -- W -- Y. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Curves, Algebraic. 
650 0 |a Surfaces, Algebraic. 
650 0 |a Hodge theory. 
650 0 |a Torelli theorem. 
650 6 |a Courbes algébriques. 
650 6 |a Surfaces algébriques. 
650 6 |a Théorie de Hodge. 
650 6 |a Théorème de Torelli. 
650 7 |a Curves, Algebraic  |2 fast 
650 7 |a Hodge theory  |2 fast 
650 7 |a Surfaces, Algebraic  |2 fast 
650 7 |a Torelli theorem  |2 fast 
758 |i has work:  |a Hodge theory and the local Torelli problem (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGfwRtrKhYgMg3bKMWW6jC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Tu, Loring W.  |t Hodge theory and the local Torelli problem.  |d Providence, Rhode Island : American Mathematical Society, [1983]  |h v, 64 ; 26 cm  |k Memoirs of the American Mathematical Society ; no. 279  |x 0065-9266  |z 9780821822791 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 279. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113535  |z Texto completo 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3113535 
938 |a ebrary  |b EBRY  |n ebr10882194 
994 |a 92  |b IZTAP