|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn884584306 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr cn||||||||| |
008 |
830225t19831983riu ob 001 0 eng d |
040 |
|
|
|a E7B
|b eng
|e rda
|e pn
|c E7B
|d OCLCO
|d EBLCP
|d OCLCF
|d OCLCQ
|d AU@
|d OCLCQ
|d K6U
|d OCLCO
|d QGK
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1259277463
|
020 |
|
|
|a 9781470406899
|q (e-book)
|
020 |
|
|
|a 1470406896
|q (e-book)
|
020 |
|
|
|z 0821822799
|q (pbk.)
|
020 |
|
|
|z 9780821822791
|
029 |
1 |
|
|a AU@
|b 000069391942
|
035 |
|
|
|a (OCoLC)884584306
|z (OCoLC)1259277463
|
050 |
|
4 |
|a QA565
|b .T85 1983eb
|
082 |
0 |
4 |
|a 510 s
|a 516.3/52
|2 19
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Tu, Loring W.,
|e author.
|
245 |
1 |
0 |
|a Hodge theory and the local Torelli problem /
|c Loring W. Tu.
|
246 |
3 |
0 |
|a Torelli problem
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c [1983]
|
264 |
|
4 |
|c ©1983
|
300 |
|
|
|a 1 online resource (72 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v number 279
|
504 |
|
|
|a Includes bibliographical references (pages 55-56) and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Table of Contents -- Introduction -- I. Variation of Hodge structure -- 1. The period map -- 2. The Hodge bundles in the smooth case -- 3. The Hodge bundles when there are singular fibers -- The log complex -- Relative dualizing sheaf -- The canonical extension -- 4. A multiplicative formula for the holomorphic Euler characteristic -- 5. Monodromy -- 6. Mixed Hodge structures and the numerical invariants of a degeneration -- 6.1. Varieties with normal crossings -- 6.2. The limiting mixed Hodge structure -- 6.3. The Clemens-Schmid exact sequence -- 6.4. Genus of a singular curve.
|
505 |
8 |
|
|a II. Local Torelli for curves -- 7. The case of no singular fibers -- 8. With singular fibers -- 8.1. First proof: mixed Hodge structure and the topology of the singular fiber -- 8.2. Second proof: using the relative dualizing sheaf to map X into a projective space -- 8.3. Third proof: the ample cone on the moduli space M -- III. Local Torelli in higher dimensions -- 9. Surfaces with large irregularity -- 10. Threefolds and fourfolds with large irregularity -- Bibliography -- List of Notations -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- K -- L -- M -- N -- P -- Q -- R -- S -- T.
|
505 |
8 |
|
|a U -- V -- W -- Y.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Curves, Algebraic.
|
650 |
|
0 |
|a Surfaces, Algebraic.
|
650 |
|
0 |
|a Hodge theory.
|
650 |
|
0 |
|a Torelli theorem.
|
650 |
|
6 |
|a Courbes algébriques.
|
650 |
|
6 |
|a Surfaces algébriques.
|
650 |
|
6 |
|a Théorie de Hodge.
|
650 |
|
6 |
|a Théorème de Torelli.
|
650 |
|
7 |
|a Curves, Algebraic
|2 fast
|
650 |
|
7 |
|a Hodge theory
|2 fast
|
650 |
|
7 |
|a Surfaces, Algebraic
|2 fast
|
650 |
|
7 |
|a Torelli theorem
|2 fast
|
758 |
|
|
|i has work:
|a Hodge theory and the local Torelli problem (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGfwRtrKhYgMg3bKMWW6jC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Tu, Loring W.
|t Hodge theory and the local Torelli problem.
|d Providence, Rhode Island : American Mathematical Society, [1983]
|h v, 64 ; 26 cm
|k Memoirs of the American Mathematical Society ; no. 279
|x 0065-9266
|z 9780821822791
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 279.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3113535
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL3113535
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10882194
|
994 |
|
|
|a 92
|b IZTAP
|