Cargando…

On the automorphisms of the classical groups /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Dieudonné, Jean, 1906-1992 (Autor)
Otros Autores: Hua, Loo-Keng, 1911- (Contribuidor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: New York : American Mathematical Society, [1951]
Colección:Memoirs of the American Mathematical Society ; no. 2.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • ""CONTENTS""; ""I. INTRODUCTION""; ""1 . Survey of the paper""; ""2. General lemmas""; ""II. AUTOMORPHISMS OF GL[sub(n)](K) (n â?Æ 3, K sfield of characteristic â? 2)""; ""3. Group-theoretic classification of involutions""; ""4. Group-theoretic characterization of transvections""; ""5. Determination of the automorphisms of GL[sub(n)](K)""; ""III. AUTOMORPHISMS OF PGL[sub(n)](K) (n â?Æ 3, K sfield of characteristic â? 2)""; ""6. Involutiona in PGL[sub(n)](K)""; ""7. Group-theoretic characterization of involutiona of the firat kind""; ""8. The case n=4""; ""9. The case n= 6""
  • ""10. Determination of the automorphisms of PGL[sub(n)](K)""""IV. AUTOMORPHISMS OF GL[sub(n)](K) AND PGL[sub(n)](K) (n â?¥ 3, K sfield of characteristic 2)""; ""11. Group-theoretic characterization of transvections""; ""12. Determination of the automorphisms of GL[sub(n)](K)""; ""13. Determination of the automorphisms of PGL[sub(n)](K)""; ""V. AUTOMORPHISMS OF SL[sub(n)](K) AND PSL[sub(n)](K)""; ""14. Reduction to previous results""; ""15. Group-theoretic characterization of transvections in SL[sub(n)](K)""; ""16. Determination of the automorphisms of SL[sub(n)](K)""
  • ""17. Determination of the automorphisms of PSL[sub(n)](K)""""18. Isomorphisms between PSL[sub(n)](K) and PSL[sub(m)](K')""; ""VI. AUTOMORPHISMS OF Sp[sub(2m)](K) (K field of characteristic â? 2)""; ""19. Group-theoretic characterization of the symplectic (n-2,2) and (2,n-2)-involutions""; ""20. The case n=4""; ""21 . The case n=4 (continued)""; ""22. Determination of the automorphisms of Sp[sub(n)](K)""; ""VII. AUTOMORPHISMS OF PSp[sub(n)](K) (K field of characteristic â? 2)""; ""23. Group-theoretic characterization of involutions of the first kind""
  • 24. Determination of the automorphisms of PSp[sub(n)](K)VIII. AUTOMORPHISMS OF Sp[sub(2m)](K) (K field of characteristic 2)
  • 25. Centralizers of involutions in Sp[sub(2m)](K)
  • 26. Group-theoretic characterization of symplectic tranavections
  • 27. The case n=4
  • 28. Determination of the automorphisms of Sp[sub(n)](K)
  • 29. Isomorphisms between PSp[sub(2m)](K) and PSp[sub(2q)](K')
  • IX. ISOMORPHISMS BETWEEN THE GROUPS PSp[sub(2m)](K) AND THE GROUPS PSL[sub(n)](K') AND V[sub(r)]
  • 30. Isomorphisms between the groups PSp[sub(2m)](K) and PSL[sub(n)]K')
  • ""31 . Isomorphisms between the groups PSp[sub(2m)(K) and V[sub(n)]""""X. AUTOMORPHISMS OF O[sub(n)](K, f) (n â?Æ 3, K field of characteristic â? 2, f quadratic from of index V â?Æ 1)""; ""32. Group-theoretic characterization of symmetriea""; ""33. Determination of the automorphiama of O[sub(n)](K, f)""; ""34. Determination of the automorphiama of O[sub(n)](K, f) (continued)""; ""XI. AUTOMORPHISMS OF O[sup(+)[sub(n)](K, f) (n â?Æ 5, K field of characteristic â? 2, f quadratic from of index V â?Æ 1)""; ""35. First case : n odd""; ""36. Second case : n even""