Finite groups whose 2-subgroups are generated by at most 4 elements /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence :
American Mathematical Society,
1974.
|
Colección: | Memoirs of the American Mathematical Society ;
no. 147. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- TABLE OF CONTENTS
- INTRODUCTION
- PART I: SOLVABLE 2-LOCAL SUBGROUPS
- 1. Introduction
- 2. The minimal counterexample
- 3. Odd order groups acting on 2-groups
- 4. The local subgroups of G
- 5. The structure of O[sub(2)(M)
- 6. The case C[sub(R)](B) / 1
- 7. Proof of Theorem A
- PART II: 2-CONSTRAINED 2-LOCAL SUBGROUPS
- 1. Introduction
- 2. The automorphism groups of certain 2-groups
- 3. Theorem B, the GL(3,2) case
- 4. Theorem B, the A[sub(5)]case
- 5. Theorems C and D, initial reduction
- 6. Theorems C and D, the A[sub(5)] case
- 7. Theorems C and D, the GL(3,2) case.
- PART III: NON 2-CONSTRAINED CENTRALIZERS OF INVOLUTIONS
- SOME SPECIAL CASES
- 1. Introduction
- 2. Theorem A
- 3. The Ŝz(8) case
- 4. The Â[sub(n) case
- 5. The M[sub(l2)] case
- 6. Some lemmas
- 7. The SL(4,q), SU(4,q), Sp(4,q) cases
- 8. The direct product case
- 9. The central product case
- PART IV: A CHARACTERIZATION OF THE GROUP D[sup(2)sub(4)](3)
- 1. Introduction
- 2. Preliminary lemmas
- 3. The centralizer of a central involution
- 4. The intersection of W and its conjugates
- 5. The normal four subgroup case
- 6. The cyclic case
- 7. The maximal class case.
- PART V: CENTRAL INVOLUTIONS WITH NON 2-CONSTRAINED CENTRALIZERS
- 1. Introduction
- 2. Initial reductions
- 3. Theorem A
- the wreathed case
- 4. Preliminary results
- 5. Maximal elementary abelian 2-subgroups
- 6. Fusion of involutions
- 7. Theorem A
- the dihedral and quasi-dihedral cases
- PART VI: A CHARACTERIZATION OF THE GROUP M[sub(12)]
- 1. Introduction
- 2. 2-groups and their automorphism groups
- 3. Some 2-groups associated with Aut(Z[sub(4)] x Z[sub(4)])
- 4. Initial reductions
- 5. Elimination of the rank 3 case
- 6. The major reduction
- 7. The non-dihedral case.
- 8. The noncyclic case
- 9. The structure of O[sub(2)](M)
- 10. The structure of S.