Cargando…

On the number of simply connected minimal surfaces spanning a curve /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Tromba, Anthony (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, [1977]
Colección:Memoirs of the American Mathematical Society ; no. 194.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Table of Contents
  • 0. Introduction
  • I.A review of the Euler characteristic of a Palais-Smale vector field
  • II. Analytical preliminaries
  • the Sobelev spaces
  • III. The global formulation of the problem of Plateau
  • IV. The existence of a vector field associated to the Dirichlet functional E[sub(Ü)]
  • V.A proof that the vector field X[sup(Ü)], associated to E[sub(Ü)], is Palais-Smale
  • VI. The weak Riemannian structure on j[sub(Ü)]
  • VII. The equivariance of X[sup(Ü)] under the action of the conformal group
  • VIII. The regularity results for minimal surfaces.
  • IX. The Fréchet derivative of the minimal surface vector field X and the surface fibre bundle
  • X. The minimal surface vector field X is proper on bounded sets
  • XI. Non-degenerate critical submanifolds of j[sub(Ü)] and a uniqueness theorem for minimal surfaces
  • XII. The spray of the weak metric
  • XIII. The transversality theorem
  • XIV. The Morse number of minimal surfaces spanning a simple closed curve and its invarience under isotopy
  • XV. References.