On the number of simply connected minimal surfaces spanning a curve /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
[1977]
|
Colección: | Memoirs of the American Mathematical Society ;
no. 194. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Table of Contents
- 0. Introduction
- I.A review of the Euler characteristic of a Palais-Smale vector field
- II. Analytical preliminaries
- the Sobelev spaces
- III. The global formulation of the problem of Plateau
- IV. The existence of a vector field associated to the Dirichlet functional E[sub(Ü)]
- V.A proof that the vector field X[sup(Ü)], associated to E[sub(Ü)], is Palais-Smale
- VI. The weak Riemannian structure on j[sub(Ü)]
- VII. The equivariance of X[sup(Ü)] under the action of the conformal group
- VIII. The regularity results for minimal surfaces.
- IX. The Fréchet derivative of the minimal surface vector field X and the surface fibre bundle
- X. The minimal surface vector field X is proper on bounded sets
- XI. Non-degenerate critical submanifolds of j[sub(Ü)] and a uniqueness theorem for minimal surfaces
- XII. The spray of the weak metric
- XIII. The transversality theorem
- XIV. The Morse number of minimal surfaces spanning a simple closed curve and its invarience under isotopy
- XV. References.