Cargando…

Formal Methods Applied to Complex Systems.

A presentation of real examples of industrial uses for formal methods such as SCADE, the B-Method, ControlBuild, Matelo, etc. in various fields, such as railways, aeronautics, and the automotive industry, the purpose of this book is to present a summary of experience on the use of these "formal...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Boulanger, Jean-Louis
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Wiley-ISTE, 2014.
Colección:Computer engineering series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Title Page ; Copyright; Contents; Introduction; Chapter 1. Formal Description and Modeling of Risks; 1.1. Introduction; 1.2. Standard process; 1.2.1. Risks, undesirable events and accidents; 1.2.2. Usual process; 1.2.3. Formal software processes for safety-critical systems; 1.2.4. Formal methods for safety-critical systems; 1.2.5. Safety kernel; 1.3. Methodology; 1.3.1. Presentation; 1.3.2. Risk mastery process; 1.4. Case study; 1.4.1. Rail transport system; 1.4.2. Presentation; 1.4.3. Description of the environment; 1.4.4. Definition of side-on collision; 1.4.5. Risk analysis
  • 1.5. Implementation1.5.1. The B method; 1.5.2. Implementation; 1.5.3. Specification of the rail transport system and side-on collision; 1.6. Conclusion; 1.7. Glossary; 1.8. Bibliography; Chapter 2. An Innovative Approach and an Adventure in Rail Safety; 2.1. Introduction; 2.2. Open Control of Train Interchangeable and Integrated System; 2.3. Computerized interlocking systems; 2.4. Conclusion; 2.5. Glossary; 2.6. Bibliography; Chapter 3. Use of Formal Proof for Cbtc (Octys); 3.1. Introduction; 3.2. Presentation of the Open Control of Train Interchangeable and Integrated System CBTC
  • 3.2.1. Open Control of Train Interchangeable and Integrated System3.2.2. Purpose of CBTC; 3.2.3. CBTC architectures; 3.3. Zone control equipment; 3.3.1. Presentation; 3.3.2. SCADE model; 3.4. Implementation of the solution; 3.5. Technical solution and implementation; 3.5.1. Property definition; 3.5.2. Two basic principles of property definition; 3.5.3. Test topologies; 3.5.4. Initial analyses; 3.5.5. The property treatment process; 3.5.6. Non-regression; 3.6. Results; 3.7. Possible improvements; 3.8. Conclusion; 3.9. Glossary; 3.10. Bibliography
  • Chapter 4. Safety Demonstration for A Rail Signaling Application in Nominal and Degraded Modes Using Formal Proof4.1. Introduction; 4.1.1. Context; 4.2. Case description; 4.2.1. Operational architecture of the PMI system; 4.2.2. CIM subsystem; 4.2.3. CIM program verification with and without proof; 4.2.4. Scope of verification; 4.3. Modeling the whole system; 4.3.1. Application model; 4.3.2. Safety properties; 4.3.3. Environment model; 4.4. Formal proof suite; 4.4.1. Modeling the system; 4.4.2. Non-certified analysis chain; 4.4.3. The certified analysis chain
  • 4.4.4. Assessment of the proof suite4.5. Application; 4.6. Results of our experience; 4.6.1. Environment modeling; 4.6.2. Proof vs. testing; 4.6.3. Limitations; 4.7. Conclusion and prospects; 4.8. Glossary; 4.9. Bibliography; Chapter 5. Formal Verification of Data for Parameterized Systems; 5.1. Introduction; 5.1.1. Systerel; 5.1.2. Data verification; 5.1.3. Parameterized systems; 5.2. Data in the development cycle; 5.2.1. Data and property identification; 5.2.2. Modeling; 5.2.3. Property validation; 5.2.4. Data production; 5.2.5. Property verification using data; 5.2.6. Data integration