|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn883632066 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr mn||||||||| |
008 |
140714t20142014enka ob 001 0 eng d |
010 |
|
|
|a 2014001402
|
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d MHW
|d IDEBK
|d EBLCP
|d YDXCP
|d E7B
|d OCLCQ
|d CDX
|d COO
|d DEBSZ
|d OSU
|d DEBBG
|d UWO
|d MOR
|d OTZ
|d OCLCQ
|d UUM
|d OCLCF
|d OCLCQ
|d WYU
|d G3B
|d IGB
|d STF
|d VT2
|d OCLCQ
|d VLY
|d OCLCO
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|d OCLCL
|d OCLCQ
|
019 |
|
|
|a 883375159
|a 1103255453
|a 1117830332
|a 1162304355
|a 1228547320
|a 1290057105
|
020 |
|
|
|a 9780199978052
|q (electronic bk.)
|
020 |
|
|
|a 0199978050
|q (electronic bk.)
|
020 |
|
|
|a 9781306939201
|q (ebk)
|
020 |
|
|
|a 1306939208
|q (ebk)
|
020 |
|
|
|z 9780199978045
|q (alk. paper)
|
020 |
|
|
|z 0199978042
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000062555654
|
029 |
1 |
|
|a DEBBG
|b BV042989828
|
029 |
1 |
|
|a DEBSZ
|b 431717788
|
029 |
1 |
|
|a DEBSZ
|b 443424748
|
035 |
|
|
|a (OCoLC)883632066
|z (OCoLC)883375159
|z (OCoLC)1103255453
|z (OCoLC)1117830332
|z (OCoLC)1162304355
|z (OCoLC)1228547320
|z (OCoLC)1290057105
|
037 |
|
|
|a 625171
|b MIL
|
050 |
|
4 |
|a QE431.6.P5
|b D68 2014eb
|
072 |
|
7 |
|a NAT
|x 030000
|2 bisacsh
|
082 |
0 |
4 |
|a 552.001/51
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Doveton, John H.,
|d 1944-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjDfFh7JwT6bxW7yt8F7pP
|
245 |
1 |
0 |
|a Principles of mathematical petrophysics /
|c John H. Doveton, Kansas Geological Survey.
|
264 |
|
1 |
|a Oxford ;
|a New York :
|b Oxford University Press,
|c [2014]
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (xiv, 248 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Studies in mathematical geosciences ;
|v 9
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a The pioneering work of Gus Archie moved log interpretation into log analysis with the introduction of the equation that bears his name. Subsequent developments have mixed empiricism, physics, mathematical algorithms, and geological or engineering models as methods applied to petrophysical measurements in boreholes all over the world. Principles of Mathematical Petrophysics reviews the application of mathematics to petrophysics in a format that crystallizes the subject as a subdiscipline appropriate for the workstations of today. The subject matter is of wide interest to both academic and indus ...
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover -- Principles of Mathematical Petrophysics -- Series -- Copyright -- Contents -- Foreword to the Series The Studies in Mathematical Geology (SMG) series was established 30 years ago to serve as an outlet for -- Preface -- Acknowledgments -- Principles of Mathematical Petrophysics -- CHAPTER 1 Fluid Saturation Evaluation -- The Archie equations -- The Humble equation and its variants -- Sensitivity analysis of Archie equation parameters -- Non-Archie sandstones -- Shaly sandstone analysis -- Double-layer shaly sandstone models -- Dual-water shaly sandstone models -- The Archie equation in carbonate rocks -- The Porosity exponent in a triple-porosity system -- Dielectric logging measurement of the porosity exponent -- Petrographic evaluations of the porosity exponent in carbonates -- The saturation exponent, n -- Wettability effects on the saturation exponent -- Archie redux -- CHAPTER 2 Porosity Volumetrics and Pore Typing -- Porosity of spherical packs -- Clastic "effective" porosity -- Neutron-density shale volumetrics -- Gamma-ray estimations of shale volume -- Correction of total porosity for shale contents -- Allocation between shale morphology types -- Carbonate porosity -- Vug porosity evaluation from acoustic and resistivity logs -- NMR logging of vuggy porosity -- CHAPTER 3 Permeability Estimation -- Permeability is a vector -- Prediction of permeability from porosity -- Flow-zone indicator (FZI) discrimination of hydraulic units -- Application of FZI to permeability prediction -- Permeability predictions from porosity and "irreducible" water saturation -- NMR estimation of permeability in clastic pore systems -- Permeability estimation in carbonates dominated by interparticle porosity -- Evaluation of permeability in dual- and triple-porosity systems -- A Wilderness of mirrors -- CHAPTER 4 Compositional Analysis of Mineralogy.
|
505 |
8 |
|
|a Some matrix algebra -- Compositional-solution evaluation -- Underdetermined systems -- Overdetermined systems -- Optimization models for compositional solutions -- Multiple-model solutions of rock composition -- Elucidation of clay minerals -- Compositional analysis from geochemical logs -- Inversion mapping of compositions -- CHAPTER 5 Petrophysical Rocks: Electrofacies and Lithofacies -- Facies and electrofacies -- Dunham textures and electrofacies -- Petrophysical recognition of lithofacies -- Zonation by cluster analysis -- Theoretical, empirical, and interpretive electrofacies methods -- Principal component analysis (PCA) of electrofacies -- Classification by a parametric electrofacies database -- Supervised electrofacies analysis methods -- Electrofacies classification by discriminant function analysis (DFA) -- Nonparametric discriminant analysis -- Neural-network prediction of lithofacies from logs -- Beyond product facies to the petrophysical prediction of process facies -- CHAPTER 6 Pore-System Facies: Pore Throats and Pore Bodies -- The Petrofacies concept -- Equivalent hydraulic radius of tubes -- Capillary pressure evaluation of pore-throat sizes -- The Winland equation -- The Flow-unit concept -- Petrofacies case-study applications of the Winland equation -- Carbonate petrofacies pore-throat size distributions -- Pore-body size distributions from nuclear magnetic resonance measurements -- NMR facies in sandstones -- NMR pore-size interpretation in carbonates -- NMR-partitioned porosity and Dunham textural classes -- NMR facies in carbonates -- CHAPTER 7 Saturation-Height Functions -- Integration: the saturation-height model -- The basics of reservoir saturation profiles -- Saturation-height modeling in sandstones from capillary pressure measurements -- Height functions for bulk-volume water -- Permeability-height functions.
|
505 |
8 |
|
|a Saturation-height modeling in carbonates -- Saturation-height modeling based on magnetic resonance logs -- Putting it all together: the static reservoir model -- Index.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
590 |
|
|
|a eBooks on EBSCOhost
|b EBSCO eBook Subscription Academic Collection - Worldwide
|
650 |
|
0 |
|a Petrology
|x Mathematical models.
|
650 |
|
0 |
|a Mineralogy
|x Mathematical models.
|
650 |
|
0 |
|a Rocks.
|
650 |
|
6 |
|a Pétrologie
|x Modèles mathématiques.
|
650 |
|
6 |
|a Minéralogie
|x Modèles mathématiques.
|
650 |
|
7 |
|a NATURE
|x Rocks & Minerals.
|2 bisacsh
|
650 |
|
7 |
|a Mineralogy
|x Mathematical models
|2 fast
|
650 |
|
7 |
|a Rocks
|2 fast
|
758 |
|
|
|i has work:
|a Principles of mathematical petrophysics (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGbGGXF4ffwvrgcPRJgk6q
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Doveton, John H., 1944-
|t Principles of mathematical petrophysics
|z 9780199978045
|w (DLC) 2014001402
|w (OCoLC)868225818
|
830 |
|
0 |
|a Studies in mathematical geology ;
|v 9.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1729598
|z Texto completo
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 28615268
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1729598
|
938 |
|
|
|a ebrary
|b EBRY
|n ebr10891839
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 809859
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis28615268
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11964141
|
994 |
|
|
|a 92
|b IZTAP
|