Cargando…

Kernel Density Estimation Basedon Grouped Data : the Case of Poverty Assessment /

We analyze the performance of kernel density methods applied to grouped data to estimate poverty (as applied in Sala-i-Martin, 2006, QJE). Using Monte Carlo simulations and household surveys, we find that the technique gives rise to biases in poverty estimates, the sign and magnitude of which vary w...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Minoiu, Camelia
Autor Corporativo: International Monetary Fund
Otros Autores: Reddy, Sanjay
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Washington, D.C. : International Monetary Fund, 2008.
Colección:IMF Working Papers ; Working Paper no. 08/183.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:We analyze the performance of kernel density methods applied to grouped data to estimate poverty (as applied in Sala-i-Martin, 2006, QJE). Using Monte Carlo simulations and household surveys, we find that the technique gives rise to biases in poverty estimates, the sign and magnitude of which vary with the bandwidth, the kernel, the number of datapoints, and across poverty lines. Depending on the chosen bandwidth, the $1/day poverty rate in 2000 varies by a factor of 1.8, while the $2/day headcount in 2000 varies by 287 million people. Our findings challenge the validity and robustness of poverty estimates derived through kernel density estimation on grouped data.
Notas:Available in PDF, ePUB, and Mobi formats on the Internet.
Descripción Física:1 online resource (34 pages)
Bibliografía:Includes bibliographical references (pages 21-25).
ISBN:1451914946
9781451914948
ISSN:2227-8885 ;