Trends in the representation theory of finite dimensional algebras : 1997 Joint Summer Research Conference on Trends in the Representation Theory of Finite Dimensional Algebras, July 20-24, 1997, Seattle, Washington /
Clasificación: | Libro Electrónico |
---|---|
Autor Corporativo: | |
Otros Autores: | , |
Formato: | Electrónico Congresos, conferencias eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
[1998]
|
Colección: | Contemporary mathematics (American Mathematical Society) ;
229. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Contents
- Preface
- List of Talks
- Postprojective partitions for tilting torsion pairs
- Derived canonical algebras as one-point extensions
- Special biserial algebras and their automorphisms
- Wild subquivers of the Auslander-Reiten quiver of a tame algebra
- Representation theory of noetherian Hopf algebras satisfying a polynomial identity
- Finite representation type and periodic Hochschild (co- )homology
- Introduction
- 1. Results and Examples
- 2. Full Additive Subcategories with Plenty of Projectives
- 3. Functor Categories
- 4. The Auslander-Reiten Structure Theorem5. Exact Frobenius Categories with Enough Projective-Injectives
- 6. Finite Representation Type
- 7. Periodic Hochschild (Co- ) Homolog
- References
- The syzygy theorem for monomial algebras
- Algebras whose derived category is tame
- Circular biextensions of tame concealed algebras
- On the distribution of AR-components of restricted Lie algebras
- Compatible deformations
- Directing objects in hereditary categories
- On subcategories associated with tilting modules
- Modules of the highest homological dimension over a Gorenstein ringDerived equivalence of graph algebras
- Basic results on wild hereditary algebras
- On minimal approximations of modules
- Serre duality for generalized Auslander regular algebras
- Classifying finite-dimensional semisimple Hopf algebras
- Geometry of modules: Degenerations
- The preprojective algebra of a tame quiver: The irreducible components of the module varieties
- Representation types, Tits reduced quadratic forms and orbit problems for lattices over orders