Every planar map is four colorable /
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Providence, Rhode Island :
American Mathematical Society,
[1989]
|
Colección: | Contemporary mathematics (American Mathematical Society) ;
v. 98. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Acknowledgments
- Introduction
- 1. History
- 2. C- and D-Reducibility
- 3. Unavoidable Sets and our Discharging Procedure
- 4. Details of the Proof
- 5. Our Checking Procedure
- Bibliography
- Part I: Discharging
- 1. Introduction D-429
- 2. The Discharging Procedure D-435
- 3. The Set U of Reducible Configurations D-459
- 4. Probabilistic Considerations D-478
- 5. Possible Improvements D-486
- Bibliography D-489
- Part II: Reducibility
- 1. Introduction R-491
- 2. The Computer Programs R-492
- 3. Immersion Reducibility R-493
- 4. The Unavoidable Set U of Reducible Configurations R-503
- Appendix to Part II
- (a) Planar graphs and maps
- (b) Planar graphs and triangulations
- (c) Planar graphs with contractions
- (d) Kempe components and interchanges on a colored graph
- (e) Representative colorations on a labeled n-ring Rn
- (f) Fillings/contractions of Rn
- (g) Kempe components on a maximal filling/contraction of Rn
- (h) Kempe interchangeable sets on a maximal filling/contraction
- (i) Abstract Kempe chain dispositions on Rn
- (j) Open subsets of (Nf (Bn
- (k) The Kempe related extension of a subset of (Nf (Bn
- reducibility
- (l) The outside filling/contraction of an immersion image
- (m) C-reducing a triangulation
- (n) The open subsets of (Nf4 (B and (Nf5 (B
- the critical open subsets of (Nf6 (B
- (o) A. Bernhart's Bend Condition for R6-reducibility
- (p) The semi-critical open subsets of (Nf6 (B that satisfy the Bend Condition
- (q) R3-, R4-, R5-, and R6-reducing a triangulation
- (r) Extended immersion images and simple extensions
- (s) Configuration sets closed under simple extensions
- (t) Sufficient conditions for non-critical configurations
- (u) Conditions for non-critical reducers
- (v) The Z-reducible closure U* of the unavoidable set U
- (w) Locating reducible configurations or rings in triangulations.
- (X) The main algorithm
- (y) An upper bound for the time demand, polynomial in N
- (z) Possible improvements
- Supplement to Part I
- Lemmas on T -dischargings, stated S-2
- proofs S-3
- Lemma (I) S-6
- Table l S-7
- Proof of Lemma (I), continued S-12
- Proof of Lemma (S+) S-14
- Proof of the qTS(V5)-Lemma Introduction S-15
- Cases (So (B = 0,1 S-18
- Case (So (B = 2 S-19
- Case (So (B = 3 S-20
- Case (So (B = 4 S-31
- Case (So (B = 5 S-38
- Proof of the L-Lemma S-44
- Tables of 3- ..., 7-digit arrangements S-45
- Proof of the qn(V1)-Lemma Case (Sn (B = 0 S-47
- Case (Sn (B = 1 S-57
- Case (Sn (B e"2 S-65
- Lemmas on L- and T -dischargings stated S-66
- Table, L2 S-68
- Proofs S-72
- Proof of qTL(Vk)-Lemma, k = 8, ..., 11 S-79
- Proof of qTL(V8)-LemmaCase W e"6 S-79
- Case W = 5 S-83
- Case W = 4 S-93
- Case W = 3 S-105
- Case W = 0 S-115
- Proof of the qTL(V9)-Lemma Case W e"6 S-121
- Case W = 5 S-127
- Case W = 4 S-142
- Case W = 3 S-160
- Case W = 0 S-167
- Proof of the qTL(V10)-Lemma S-170
- Case 5,L, T2 S-172
- Case 5,L, ., L,5 S-173
- Case (Sp (B e"8 S-174
- Case v = 7 S-175
- Case v = 6 or 5 S-177
- Proof of the qTL(V11)-Lemma S-195
- Proof of the S-Lemma S-197
- Supplement to Part II
- ((Sa (B) The immersion reducibility of the configurations of U S-198
- ((Sb (B) The reducers S-202
- ((Sd (B) The n-decreased extensions S-218
- ((Se (B) n- and m-values and major vertices of the configurations of U S-250
- ((Sf (B)List of configurations in U-U' S-251
- Corresponding Class Check Lists
- (a), (b) C-1
- I1-1 ..., 15-35 C-1
- C-23
- (1a) ..., (1l) C-32
- (2a) ..., (2fg) C-37
- (3a) ..., (3cb) C-88
- (4a) ..., (4g) C-125
- CTS#04 ..., CTS#33 C-133
- (5a) ..., (5s) C-139
- (6a) ..., (7h) C-146
- (8a) ..., (8c) C-152
- (8d) ..., (8x) C-153
- (9a) ..., (10v) C-165
- (11a) ..., (11h) C-177
- (12a) ..., (12g) C-179.
- (13a) ..., (l3n) C-180
- (14a) ..., (15c) C-185
- (16a) ..., (16g) C-193
- CTL#1 ..., CTL#152 C-194.