Cargando…

Every planar map is four colorable /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Appel, Kenneth I., 1932-2013 (Autor), Haken, Wolfgang (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Providence, Rhode Island : American Mathematical Society, [1989]
Colección:Contemporary mathematics (American Mathematical Society) ; v. 98.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn882236680
003 OCoLC
005 20240329122006.0
006 m o d
007 cr cn|||||||||
008 890605t19891989riua ob 000 0 eng d
040 |a E7B  |b eng  |e rda  |e pn  |c E7B  |d OCLCO  |d EBLCP  |d OCLCF  |d OCLCQ  |d AU@  |d OCLCQ  |d K6U  |d OCLCO  |d QGK  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1259125580 
020 |a 9780821876862  |q (e-book) 
020 |a 0821876864  |q (e-book) 
020 |a 0821854313 
020 |a 9780821854310 
020 |z 0821851039  |q (alk. paper) 
020 |z 9780821851036 
029 1 |a AU@  |b 000069468847 
035 |a (OCoLC)882236680  |z (OCoLC)1259125580 
050 4 |a QA612.18  |b .A67 1989eb 
082 0 4 |a 511/.5  |2 20 
049 |a UAMI 
100 1 |a Appel, Kenneth I.,  |d 1932-2013,  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJwhD84hwR8hY4fQFK4THC 
245 1 0 |a Every planar map is four colorable /  |c Kenneth Appel, and Wolfgang Haken. 
246 3 |a Every planar map is 4 colorable 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c [1989] 
264 4 |c ©1989 
300 |a 1 online resource (760 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Contemporary mathematics,  |x 0271-4132 ;  |v volume 98 
504 |a Includes bibliographical references. 
588 0 |a Print version record. 
505 0 |a Acknowledgments -- Introduction -- 1. History -- 2. C- and D-Reducibility -- 3. Unavoidable Sets and our Discharging Procedure -- 4. Details of the Proof -- 5. Our Checking Procedure -- Bibliography -- Part I: Discharging -- 1. Introduction D-429 -- 2. The Discharging Procedure D-435 -- 3. The Set U of Reducible Configurations D-459 -- 4. Probabilistic Considerations D-478 -- 5. Possible Improvements D-486 -- Bibliography D-489 -- Part II: Reducibility -- 1. Introduction R-491 -- 2. The Computer Programs R-492 -- 3. Immersion Reducibility R-493 -- 4. The Unavoidable Set U of Reducible Configurations R-503 -- Appendix to Part II -- (a) Planar graphs and maps -- (b) Planar graphs and triangulations -- (c) Planar graphs with contractions -- (d) Kempe components and interchanges on a colored graph -- (e) Representative colorations on a labeled n-ring Rn -- (f) Fillings/contractions of Rn -- (g) Kempe components on a maximal filling/contraction of Rn -- (h) Kempe interchangeable sets on a maximal filling/contraction -- (i) Abstract Kempe chain dispositions on Rn -- (j) Open subsets of (Nf (Bn -- (k) The Kempe related extension of a subset of (Nf (Bn -- reducibility -- (l) The outside filling/contraction of an immersion image -- (m) C-reducing a triangulation -- (n) The open subsets of (Nf4 (B and (Nf5 (B -- the critical open subsets of (Nf6 (B -- (o) A. Bernhart's Bend Condition for R6-reducibility -- (p) The semi-critical open subsets of (Nf6 (B that satisfy the Bend Condition -- (q) R3-, R4-, R5-, and R6-reducing a triangulation -- (r) Extended immersion images and simple extensions -- (s) Configuration sets closed under simple extensions -- (t) Sufficient conditions for non-critical configurations -- (u) Conditions for non-critical reducers -- (v) The Z-reducible closure U* of the unavoidable set U -- (w) Locating reducible configurations or rings in triangulations. 
505 8 |a (X) The main algorithm -- (y) An upper bound for the time demand, polynomial in N -- (z) Possible improvements -- Supplement to Part I -- Lemmas on T -dischargings, stated S-2 -- proofs S-3 -- Lemma (I) S-6 -- Table l S-7 -- Proof of Lemma (I), continued S-12 -- Proof of Lemma (S+) S-14 -- Proof of the qTS(V5)-Lemma Introduction S-15 -- Cases (So (B = 0,1 S-18 -- Case (So (B = 2 S-19 -- Case (So (B = 3 S-20 -- Case (So (B = 4 S-31 -- Case (So (B = 5 S-38 -- Proof of the L-Lemma S-44 -- Tables of 3- ..., 7-digit arrangements S-45 -- Proof of the qn(V1)-Lemma Case (Sn (B = 0 S-47 -- Case (Sn (B = 1 S-57 -- Case (Sn (B e"2 S-65 -- Lemmas on L- and T -dischargings stated S-66 -- Table, L2 S-68 -- Proofs S-72 -- Proof of qTL(Vk)-Lemma, k = 8, ..., 11 S-79 -- Proof of qTL(V8)-LemmaCase W e"6 S-79 -- Case W = 5 S-83 -- Case W = 4 S-93 -- Case W = 3 S-105 -- Case W = 0 S-115 -- Proof of the qTL(V9)-Lemma Case W e"6 S-121 -- Case W = 5 S-127 -- Case W = 4 S-142 -- Case W = 3 S-160 -- Case W = 0 S-167 -- Proof of the qTL(V10)-Lemma S-170 -- Case 5,L, T2 S-172 -- Case 5,L, ., L,5 S-173 -- Case (Sp (B e"8 S-174 -- Case v = 7 S-175 -- Case v = 6 or 5 S-177 -- Proof of the qTL(V11)-Lemma S-195 -- Proof of the S-Lemma S-197 -- Supplement to Part II -- ((Sa (B) The immersion reducibility of the configurations of U S-198 -- ((Sb (B) The reducers S-202 -- ((Sd (B) The n-decreased extensions S-218 -- ((Se (B) n- and m-values and major vertices of the configurations of U S-250 -- ((Sf (B)List of configurations in U-U' S-251 -- Corresponding Class Check Lists -- (a), (b) C-1 -- I1-1 ..., 15-35 C-1 -- C-23 -- (1a) ..., (1l) C-32 -- (2a) ..., (2fg) C-37 -- (3a) ..., (3cb) C-88 -- (4a) ..., (4g) C-125 -- CTS#04 ..., CTS#33 C-133 -- (5a) ..., (5s) C-139 -- (6a) ..., (7h) C-146 -- (8a) ..., (8c) C-152 -- (8d) ..., (8x) C-153 -- (9a) ..., (10v) C-165 -- (11a) ..., (11h) C-177 -- (12a) ..., (12g) C-179. 
505 8 |a (13a) ..., (l3n) C-180 -- (14a) ..., (15c) C-185 -- (16a) ..., (16g) C-193 -- CTL#1 ..., CTL#152 C-194. 
546 |a English. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Four-color problem. 
650 6 |a Problème des quatre couleurs. 
650 7 |a Four-color problem  |2 fast 
700 1 |a Haken, Wolfgang,  |e author. 
758 |i has work:  |a Every planar map is four colorable (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGYBhWby7gbWPwX3kWRyJP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Appel, Kenneth I.  |t Every planar map is four colorable.  |d Providence, Rhode Island : American Mathematical Society, [1989]  |h xv, 741 pages ; 25 cm.  |k Contemporary mathematics ; v. 98  |x 0271-4132  |z 9780821851036  |w (DLC) 10873059 
830 0 |a Contemporary mathematics (American Mathematical Society) ;  |v v. 98. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=3112896  |z Texto completo 
936 |a BATCHLOAD 
938 |a ProQuest Ebook Central  |b EBLB  |n EBL3112896 
938 |a ebrary  |b EBRY  |n ebr10873059 
994 |a 92  |b IZTAP