|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn881689338 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
140624s2014 riua ob 000 0 eng |
040 |
|
|
|a GZM
|b eng
|e rda
|e pn
|c GZM
|d UIU
|d COO
|d OCLCF
|d YDXCP
|d OCLCQ
|d OCLCA
|d EBLCP
|d LEAUB
|d OCLCQ
|d UKAHL
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCQ
|d QGK
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1259127224
|
020 |
|
|
|a 9781470417246
|q (online)
|
020 |
|
|
|a 1470417243
|q (online)
|
020 |
|
|
|z 9780821898574
|q (alk. paper)
|
020 |
|
|
|z 0821898574
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000056921950
|
035 |
|
|
|a (OCoLC)881689338
|z (OCoLC)1259127224
|
050 |
|
4 |
|a QA612.3
|b .G74 2014
|
082 |
0 |
4 |
|a 514/.23
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Green, M.
|q (Mark),
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJghp6vMBBxydRqbtMGrbd
|
245 |
1 |
0 |
|a Special values of automorphic cohomology classes /
|c Mark Green, Phillip Griffiths, Matt Kerr.
|
246 |
3 |
0 |
|a Automorphic cohomology classes
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2014.
|
300 |
|
|
|a 1 online resource (v, 145 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v number 1088
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "Volume 231, number 1088 (fifth of 5 numbers), September 2014."
|
504 |
|
|
|a Includes bibliographical references (pages 143-145).
|
505 |
0 |
|
|a Introduction -- Geometry of the Mumford-Tate domains -- Homogeneous line bundles over the Mumford-Tate domains -- Correspondence and cycle spaces; Penrose transforms -- The Penrose transform in the automorphic case and the main result.
|
520 |
|
|
|a The authors study the complex geometry and coherent cohomology of nonclassical Mumford-Tate domains and their quotients by discrete groups. Their focus throughout is on the domains D which occur as open G(\mathbb{R})-orbits in the flag varieties for G=SU(2,1) and Sp(4), regarded as classifying spaces for Hodge structures of weight three. In the context provided by these basic examples, the authors formulate and illustrate the general method by which correspondence spaces \mathcal{W} give rise to Penrose transforms between the cohomologies H^{q}(D, L) of distinct such orbits with coefficients in.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Homology theory.
|
650 |
|
0 |
|a Cohomology operations.
|
650 |
|
0 |
|a Automorphic forms.
|
650 |
|
0 |
|a Mumford-Tate groups.
|
650 |
|
0 |
|a Penrose transform.
|
650 |
|
6 |
|a Homologie.
|
650 |
|
6 |
|a Opérations cohomologiques.
|
650 |
|
6 |
|a Formes automorphes.
|
650 |
|
6 |
|a Groupes de Mumford-Tate.
|
650 |
|
6 |
|a Transformation de Penrose.
|
650 |
|
7 |
|a Automorphic forms
|2 fast
|
650 |
|
7 |
|a Cohomology operations
|2 fast
|
650 |
|
7 |
|a Homology theory
|2 fast
|
650 |
|
7 |
|a Mumford-Tate groups
|2 fast
|
650 |
|
7 |
|a Penrose transform
|2 fast
|
700 |
1 |
|
|a Griffiths, Phillip,
|d 1938-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJqw6YJbXtpt37CFJ9MF8C
|
700 |
1 |
|
|a Kerr, Matthew D.,
|d 1975-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PBJB8pRMmhTBcQfFbQkjHmd
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
776 |
0 |
8 |
|i Print version:
|a Green, M. (Mark).
|t Special values of automorphic cohomology classes.
|d Providence, Rhode Island : American Mathematical Society, 2014
|z 9780821898574
|w (DLC) 2014015548
|w (OCoLC)878051052
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1088.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5295306
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37444882
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5295306
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12358253
|
994 |
|
|
|a 92
|b IZTAP
|