|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn881689090 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
140624s2014 riu ob 000 0 eng |
040 |
|
|
|a GZM
|b eng
|e rda
|e pn
|c GZM
|d UIU
|d COO
|d OCLCF
|d YDXCP
|d OCLCQ
|d OCLCA
|d EBLCP
|d LEAUB
|d OCLCQ
|d N$T
|d UKAHL
|d K6U
|d OCLCQ
|d OCLCO
|d QGK
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 1259077196
|
020 |
|
|
|a 1470417235
|q (online)
|
020 |
|
|
|a 9781470417239
|q (electronic bk.)
|
020 |
|
|
|z 9780821894170
|q (alk. paper)
|
020 |
|
|
|z 082189417X
|q (alk. paper)
|
029 |
1 |
|
|a AU@
|b 000056687548
|
035 |
|
|
|a (OCoLC)881689090
|z (OCoLC)1259077196
|
050 |
|
4 |
|a QA176
|b .B88 2014
|
082 |
0 |
4 |
|a 512/.482
|2 23
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Bushnell, Colin J.
|q (Colin John),
|d 1947-
|e author.
|
245 |
1 |
0 |
|a To an effective local Langlands correspondence /
|c Colin J. Bushnell, Guy Henniart.
|
264 |
|
1 |
|a Providence, Rhode Island :
|b American Mathematical Society,
|c 2014.
|
300 |
|
|
|a 1 online resource (v, 88 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Memoirs of the American Mathematical Society,
|x 0065-9266 ;
|v number 1087
|
588 |
0 |
|
|a Print version record.
|
500 |
|
|
|a "Volume 231, number 1087 (fourth of 5 numbers), September 2014."
|
504 |
|
|
|a Includes bibliographical references (pages 87-88).
|
505 |
0 |
|
|a Introduction -- Representations of Weil groups -- Simple characters and tame parameters -- Action of tame characters -- Cuspidal representations -- Algebraic induction maps -- Some properties of the Langlands correspondence -- A naïve correspondence and the Langlands correspondence -- Totally ramified representations -- Unramified automorphic induction -- Discrepancy at a prime element -- Symplectic signs -- Main theorem and examples.
|
520 |
|
|
|a Let F be a non-Archimedean local field. Let \mathcal{W}_{F} be the Weil group of F and \mathcal{P}_{F} the wild inertia subgroup of \mathcal{W}_{F}. Let \widehat {\mathcal{W}}_{F} be the set of equivalence classes of irreducible smooth representations of \mathcal{W}_{F}. Let \mathcal{A}^{0}_{n}(F) denote the set of equivalence classes of irreducible cuspidal representations of \mathrm{GL}_{n}(F) and set \widehat {\mathrm{GL}}_{F} = \bigcup _{n\ge 1} \mathcal{A}^{0}_{n}(F). If \sigma \in \widehat {\mathcal{W}}_{F}, let ^{L}{\sigma }\in \widehat {\mathrm{GL}}_{F} be the cuspidal representation m.
|
546 |
|
|
|a English.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Local fields (Algebra)
|
650 |
|
0 |
|a Representations of groups.
|
650 |
|
0 |
|a Automorphic forms.
|
650 |
|
6 |
|a Corps locaux (Algèbre)
|
650 |
|
6 |
|a Représentations de groupes.
|
650 |
|
6 |
|a Formes automorphes.
|
650 |
|
7 |
|a Automorphic forms
|2 fast
|
650 |
|
7 |
|a Local fields (Algebra)
|2 fast
|
650 |
|
7 |
|a Representations of groups
|2 fast
|
700 |
1 |
|
|a Henniart, Guy,
|e author.
|
710 |
2 |
|
|a American Mathematical Society,
|e publisher.
|
758 |
|
|
|i has work:
|a To an effective local Langlands correspondence (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGF8brFvRqkWQQqPVHhfv3
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Bushnell, Colin J. (Colin John), 1947-
|t To an effective local Langlands correspondence.
|d Providence, Rhode Island : American Mathematical Society, 2014
|z 9780821894170
|w (DLC) 2014015533
|w (OCoLC)878953595
|
830 |
|
0 |
|a Memoirs of the American Mathematical Society ;
|v no. 1087.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=5295305
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH37444881
|
938 |
|
|
|a ProQuest Ebook Central
|b EBLB
|n EBL5295305
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 971243
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 12358252
|
994 |
|
|
|a 92
|b IZTAP
|