|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn881286436 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr mn||||||||| |
008 |
140611t20142014nju ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d IDEBK
|d CDX
|d OCLCF
|d OSU
|d JSTOR
|d MTG
|d DEBBG
|d OCLCQ
|d EBLCP
|d YDXCP
|d DEBSZ
|d UKMGB
|d COO
|d UIU
|d CCO
|d OCLCQ
|d UAB
|d COCUF
|d LOA
|d MERUC
|d OCLCQ
|d PIFAG
|d FVL
|d ZCU
|d OCLCQ
|d NJR
|d DEGRU
|d U3W
|d OCLCQ
|d EZ9
|d CUY
|d OCLCQ
|d STF
|d WRM
|d ICG
|d INT
|d VT2
|d OCLCQ
|d WYU
|d LVT
|d TKN
|d OCLCQ
|d LEAUB
|d DKC
|d OCLCQ
|d UKAHL
|d OCLCQ
|d SFB
|d OCLCQ
|d AUD
|d MM9
|d TUHNV
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
016 |
7 |
|
|a 016941635
|2 Uk
|
019 |
|
|
|a 881035050
|a 881165593
|a 979911043
|a 992822064
|a 1162029499
|
020 |
|
|
|a 9781400852758
|q (electronic bk.)
|
020 |
|
|
|a 1400852757
|q (electronic bk.)
|
020 |
|
|
|a 9781306823975
|q (electronic bk.)
|
020 |
|
|
|a 1306823978
|q (electronic bk.)
|
020 |
|
|
|z 9780691162515
|q (hardcover ;
|q alk. paper)
|
020 |
|
|
|z 0691162514
|q (hardcover ;
|q alk. paper)
|
020 |
|
|
|z 9780691162522
|q (pbk. ;
|q alk. paper)
|
020 |
|
|
|z 0691162522
|q (pbk. ;
|q alk. paper)
|
024 |
7 |
|
|a 10.1515/9781400852758
|2 doi
|
029 |
1 |
|
|a AU@
|b 000053330998
|
029 |
1 |
|
|a AU@
|b 000063659009
|
029 |
1 |
|
|a CHBIS
|b 010480853
|
029 |
1 |
|
|a CHBIS
|b 010896048
|
029 |
1 |
|
|a CHVBK
|b 336922841
|
029 |
1 |
|
|a CHVBK
|b 483380369
|
029 |
1 |
|
|a DEBBG
|b BV042523212
|
029 |
1 |
|
|a DEBBG
|b BV043037939
|
029 |
1 |
|
|a DEBSZ
|b 413927377
|
029 |
1 |
|
|a DEBSZ
|b 416434592
|
029 |
1 |
|
|a DEBSZ
|b 429933290
|
029 |
1 |
|
|a DEBSZ
|b 445558733
|
029 |
1 |
|
|a DEBSZ
|b 44677989X
|
029 |
1 |
|
|a GBVCP
|b 1003769543
|
035 |
|
|
|a (OCoLC)881286436
|z (OCoLC)881035050
|z (OCoLC)881165593
|z (OCoLC)979911043
|z (OCoLC)992822064
|z (OCoLC)1162029499
|
037 |
|
|
|a 613648
|b MIL
|
037 |
|
|
|a 22573/ctt6nr77t
|b JSTOR
|
050 |
|
4 |
|a QA329.6
|b .S77 2014eb
|
072 |
|
7 |
|a MAT
|x 005000
|2 bisacsh
|
072 |
|
7 |
|a MAT
|x 034000
|2 bisacsh
|
072 |
|
7 |
|a MAT034000
|2 bisacsh
|
072 |
|
7 |
|a MAT005000
|2 bisacsh
|
082 |
0 |
4 |
|a 515/.98
|2 23
|
084 |
|
|
|a SI 830
|2 rvk
|
084 |
|
|
|a SK 540
|2 rvk
|0 (DE-625)rvk/143245
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Street, Brian,
|d 1981-
|e author.
|1 https://id.oclc.org/worldcat/entity/E39PCjHmh7xTJTpYRJtFC7KxcP
|
245 |
1 |
0 |
|a Multi-parameter singular integrals /
|c Brian Street.
|
264 |
|
1 |
|a Princeton :
|b Princeton University Press,
|c [2014]
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (xiii, 395 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
347 |
|
|
|b PDF
|
490 |
1 |
|
|a Annals of mathematics studies ;
|v number 189
|
520 |
|
|
|a This book develops a new theory of multi-parameter singular integrals associated with Carnot-Carathéodory balls. Brian Street first details the classical theory of Calderón-Zygmund singular integrals and applications to linear partial differential equations. He then outlines the theory of multi-parameter Carnot-Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. Street then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples.
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Cover; Contents; Preface; 1 The Calderón-Zygmund Theory I: Ellipticity; 1.1 Non-homogeneous kernels; 1.2 Non-translation invariant operators; 1.3 Pseudodifferential operators; 1.4 Elliptic equations; 1.5 Further reading and references; 2 The Calderón-Zygmund Theory II: Maximal Hypoellipticity; 2.1 Vector fields with formal degrees; 2.2 The Frobenius theorem; 2.2.1 Scaling techniques; 2.2.2 Ideas in the proof; 2.3 Vector fields with formal degrees revisited; 2.4 Maximal hypoellipticity; 2.4.1 Subellipticity; 2.4.2 Scale invariance; 2.5 Smooth metrics and bump functions; 2.6 The sub-Laplacian.
|
505 |
8 |
|
|a 2.7 The algebra of singular integrals2.7.1 More on the cancellation condition; 2.8 The topology; 2.9 The maximal function; 2.10 Non-isotropic Sobolev spaces; 2.11 Maximal hypoellipticity revisited; 2.11.1 The Kohn Laplacian; 2.12 Exponential maps; 2.13 Nilpotent Lie groups; 2.14 Pseudodifferential operators; 2.15 Beyond Hörmander's condition; 2.15.1 More on the assumptions; 2.15.2 When the vector fields span; 2.15.3 When the vector fields do not span; 2.15.4 A Littlewood-Paley theory; 2.15.5 The role of real analyticity; 2.16 Further reading and references.
|
505 |
8 |
|
|a 3 Multi-parameter Carnot-Carathéodory Geometry3.1 Assumptions on the vector fields; 3.2 Some preliminary estimates; 3.3 The maximal function; 3.4 A Littlewood-Paley theory; 3.5 Further reading and references; 4 Multi-parameter Singular Integrals I: Examples; 4.1 The product theory of singular integrals; 4.1.1 Non-isotropic Sobolev spaces; 4.1.2 Further reading and references; 4.2 Flag kernels on graded groups and beyond; 4.2.1 Non-isotropic Sobolev spaces; 4.2.2 Further reading and references; 4.3 Left and right invariant operators; 4.3.1 An example of Kohn.
|
505 |
8 |
|
|a 4.3.2 Further reading and references4.4 Carnot-Carathéodory and Euclidean geometries; 4.4.1 The [omitted]-Neumann problem; 4.4.2 Further reading and references; 5 Multi-parameter Singular Integrals II: General Theory; 5.1 The main results; 5.1.1 Non-isotropic Sobolev spaces; 5.1.2 Multi-parameter pseudodifferential operators; 5.1.3 Adding parameters; 5.1.4 Pseudolocality; 5.2 Schwartz space and product kernels; 5.3 Pseudodifferential operators and A[sub(3)] ⁶"A[sub(4)]; 5.4 Elementary operators and A[sub(4)] ⁶"A[sub(3)]; 5.5 A[sub(4)] ⁶"A[sub(2)] ⁶"A[sub(1)]; 5.6 A[sub(1)] ⁶"A[sub(4)].
|
505 |
8 |
|
|a 5.7 The topology5.8 Non-isotropic Sobolev spaces; 5.9 Adding parameters; 5.10 Pseudolocality; 5.10.1 Operators on a compact manifold; 5.11 Examples; 5.11.1 Euclidean vector fields; 5.11.2 Hörmander vector fields and other geometries; 5.11.3 Carnot-Carathéodory and Euclidean geometries; 5.11.4 An Example of Kohn; 5.11.5 The product theory of singular integrals; 5.12 Some generalizations; 5.13 Closing remarks; A Functional Analysis; A.1 Locally convex topological vector spaces; A.1.1 Duals and distributions; A.2 Tensor Products; B Three Results from Calculus; B.1 Exponential of vector fields.
|
546 |
|
|
|a In English.
|
590 |
|
|
|a JSTOR
|b Books at JSTOR Demand Driven Acquisitions (DDA)
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Singular integrals.
|
650 |
|
0 |
|a Transformations (Mathematics)
|
650 |
|
6 |
|a Intégrales singulières.
|
650 |
|
7 |
|a MATHEMATICS
|x Calculus.
|2 bisacsh
|
650 |
|
7 |
|a MATHEMATICS
|x Mathematical Analysis.
|2 bisacsh
|
650 |
|
7 |
|a Singular integrals
|2 fast
|
650 |
|
7 |
|a Transformations (Mathematics)
|2 fast
|
758 |
|
|
|i has work:
|a Multi-parameter singular integrals (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCGyQjkBGcbDyPHrgDddM6C
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Street, Brian, 1981-
|t Multi-parameter singular integrals
|z 9780691162515
|w (DLC) 2013045259
|w (OCoLC)862962338
|
830 |
|
0 |
|a Annals of mathematics studies ;
|v no. 189.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1689376
|z Texto completo
|
938 |
|
|
|a Askews and Holts Library Services
|b ASKH
|n AH26813770
|
938 |
|
|
|a Coutts Information Services
|b COUT
|n 28430956
|
938 |
|
|
|a De Gruyter
|b DEGR
|n 9781400852758
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1689376
|
938 |
|
|
|a EBSCOhost
|b EBSC
|n 778847
|
938 |
|
|
|a ProQuest MyiLibrary Digital eBook Collection
|b IDEB
|n cis28430956
|
938 |
|
|
|a YBP Library Services
|b YANK
|n 11842317
|
994 |
|
|
|a 92
|b IZTAP
|