|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
EBOOKCENTRAL_ocn881247092 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m fo d |
007 |
cr cnu---anc|a |
008 |
140604s2013 xxu fob 001 0 eng |
040 |
|
|
|a AU@
|b eng
|e rda
|e pn
|c AU@
|d OCLCO
|d OCLCF
|d EBLCP
|d MHW
|d DEBSZ
|d OCLCQ
|d IDB
|d MERUC
|d OCLCQ
|d WYU
|d ESU
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 862827064
|
020 |
|
|
|a 9781466556683
|q (Electronic bk.)
|
020 |
|
|
|a 1466556684
|q (Electronic bk.)
|
029 |
0 |
|
|a AU@
|b 000052945559
|
029 |
1 |
|
|a AU@
|b 000052913135
|
029 |
1 |
|
|a AU@
|b 000062491319
|
029 |
1 |
|
|a CHNEW
|b 000898950
|
029 |
1 |
|
|a CHVBK
|b 403388090
|
029 |
1 |
|
|a DEBSZ
|b 405624034
|
029 |
1 |
|
|a DEBSZ
|b 426972791
|
029 |
1 |
|
|a DEBSZ
|b 445556978
|
035 |
|
|
|a (OCoLC)881247092
|z (OCoLC)862827064
|
050 |
|
4 |
|a QA278.5 .T35 2014
|
082 |
0 |
4 |
|a 519.5/35
|a 519.535
|
084 |
|
|
|a MAT029000
|2 bisacsh
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Takane, Yoshio,
|e author.
|
245 |
1 |
0 |
|a Constrained principal component analysis and related techniques /
|c Yoshio Takane.
|
264 |
|
1 |
|a Boca Raton :
|b CRC Press,
|c [2014]
|
300 |
|
|
|a 1 online resource (xvii, 224 pages .)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Monographs on statistics and applied probability ;
|v 129
|
588 |
0 |
|
|a Print version record.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Front cover; Contents; List of figures; List of tables; Preface; About the author; Chapter 1: Introduction; Chapter 2: Mathematical foundation; Chapter 3: Constrained principal component analysis (CPCA); Chapter 4: Special cases and related methods; Chapter 5: Related topics of interest; Chapter 6: Different constraints on different dimensions (DCDD); Epilogue; Appendix; Bibliography; Back cover.
|
520 |
|
|
|a In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data. How can regression analysis and PCA be combined in a beneficial way? Why and when is it a good idea to combine them? What kind of benefits are we getting from them? Addressing these questions, Constrained Principal Component Analysis and Related Techniques shows how constrained PCA (CPCA) offers a unified framework for these approaches. The book begins with four concre.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Principal components analysis.
|
650 |
|
0 |
|a Multivariate analysis.
|
650 |
|
2 |
|a Multivariate Analysis
|
650 |
|
6 |
|a Analyse en composantes principales.
|
650 |
|
6 |
|a Analyse multivariée.
|
650 |
|
7 |
|a MATHEMATICS
|x Probability & Statistics
|x General.
|2 bisacsh
|
650 |
|
7 |
|a Multivariate analysis
|2 fast
|
650 |
|
7 |
|a Principal components analysis
|2 fast
|
758 |
|
|
|i has work:
|a Constrained principal component analysis and related techniques (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFrGH4KVtkQRk4J8HyTMbm
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Takane, Yoshio.
|t Constrained Principal Component Analysis and Related Techniques.
|d Hoboken : Taylor and Francis, ©2013
|z 9781466556669
|
830 |
|
0 |
|a Monographs on statistics and applied probability (Series) ;
|v 129.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1402688
|z Texto completo
|
936 |
|
|
|a BATCHLOAD
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1402688
|
994 |
|
|
|a 92
|b IZTAP
|