Cargando…

Constrained principal component analysis and related techniques /

In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data. How can regression analysis and PCA be combined in a beneficial way? W...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Takane, Yoshio (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton : CRC Press, [2014]
Colección:Monographs on statistics and applied probability (Series) ; 129.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 EBOOKCENTRAL_ocn881247092
003 OCoLC
005 20240329122006.0
006 m fo d
007 cr cnu---anc|a
008 140604s2013 xxu fob 001 0 eng
040 |a AU@  |b eng  |e rda  |e pn  |c AU@  |d OCLCO  |d OCLCF  |d EBLCP  |d MHW  |d DEBSZ  |d OCLCQ  |d IDB  |d MERUC  |d OCLCQ  |d WYU  |d ESU  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 862827064 
020 |a 9781466556683  |q (Electronic bk.) 
020 |a 1466556684  |q (Electronic bk.) 
029 0 |a AU@  |b 000052945559 
029 1 |a AU@  |b 000052913135 
029 1 |a AU@  |b 000062491319 
029 1 |a CHNEW  |b 000898950 
029 1 |a CHVBK  |b 403388090 
029 1 |a DEBSZ  |b 405624034 
029 1 |a DEBSZ  |b 426972791 
029 1 |a DEBSZ  |b 445556978 
035 |a (OCoLC)881247092  |z (OCoLC)862827064 
050 4 |a QA278.5 .T35 2014 
082 0 4 |a 519.5/35  |a 519.535 
084 |a MAT029000  |2 bisacsh 
049 |a UAMI 
100 1 |a Takane, Yoshio,  |e author. 
245 1 0 |a Constrained principal component analysis and related techniques /  |c Yoshio Takane. 
264 1 |a Boca Raton :  |b CRC Press,  |c [2014] 
300 |a 1 online resource (xvii, 224 pages .) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Monographs on statistics and applied probability ;  |v 129 
588 0 |a Print version record. 
504 |a Includes bibliographical references and index. 
505 0 |a Front cover; Contents; List of figures; List of tables; Preface; About the author; Chapter 1: Introduction; Chapter 2: Mathematical foundation; Chapter 3: Constrained principal component analysis (CPCA); Chapter 4: Special cases and related methods; Chapter 5: Related topics of interest; Chapter 6: Different constraints on different dimensions (DCDD); Epilogue; Appendix; Bibliography; Back cover. 
520 |a In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data. How can regression analysis and PCA be combined in a beneficial way? Why and when is it a good idea to combine them? What kind of benefits are we getting from them? Addressing these questions, Constrained Principal Component Analysis and Related Techniques shows how constrained PCA (CPCA) offers a unified framework for these approaches. The book begins with four concre. 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
650 0 |a Principal components analysis. 
650 0 |a Multivariate analysis. 
650 2 |a Multivariate Analysis 
650 6 |a Analyse en composantes principales. 
650 6 |a Analyse multivariée. 
650 7 |a MATHEMATICS  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Multivariate analysis  |2 fast 
650 7 |a Principal components analysis  |2 fast 
758 |i has work:  |a Constrained principal component analysis and related techniques (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFrGH4KVtkQRk4J8HyTMbm  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Takane, Yoshio.  |t Constrained Principal Component Analysis and Related Techniques.  |d Hoboken : Taylor and Francis, ©2013  |z 9781466556669 
830 0 |a Monographs on statistics and applied probability (Series) ;  |v 129. 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1402688  |z Texto completo 
936 |a BATCHLOAD 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1402688 
994 |a 92  |b IZTAP