Cargando…

Constrained principal component analysis and related techniques /

In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data. How can regression analysis and PCA be combined in a beneficial way? W...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Takane, Yoshio (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton : CRC Press, [2014]
Colección:Monographs on statistics and applied probability (Series) ; 129.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:In multivariate data analysis, regression techniques predict one set of variables from another while principal component analysis (PCA) finds a subspace of minimal dimensionality that captures the largest variability in the data. How can regression analysis and PCA be combined in a beneficial way? Why and when is it a good idea to combine them? What kind of benefits are we getting from them? Addressing these questions, Constrained Principal Component Analysis and Related Techniques shows how constrained PCA (CPCA) offers a unified framework for these approaches. The book begins with four concre.
Descripción Física:1 online resource (xvii, 224 pages .)
Bibliografía:Includes bibliographical references and index.
ISBN:9781466556683
1466556684