Developments in fiber-reinforced polymer (FRP) composites for civil engineering /
Annotation
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, UK ; Philadelphia, PA :
Woodhead Pub.,
2013.
|
Colección: | Woodhead Publishing series in civil and structural engineering.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Developments in fiber-reinforced polymer (FRP) composites for civil engineering; Copyright; Contents; Contributor contact details; Woodhead Publishing Series in Civil and Structural Engineering; Introduction; Part I General developments; 1 Types of fiber and fiber arrangement in fiber-reinforced polymer (FRP) composites; 1.1 Introduction; 1.2 Fibers; 1.3 Fabrics; 1.4 Composites; 1.5 Future trends; 1.6 Sources of further information and advice; 1.7 References; 2 Biofiber reinforced polymer composites for structural applications; 2.1 Introduction; 2.2 Reinforcing fibers.
- 2.3 Drawbacks of biofibers2.4 Modifi cation of natural fibers; 2.5 Matrices for biocomposites; 2.6 Processing of biofiber-reinforced plastic composites; 2.7 Performance of biocomposites; 2.8 Future trends; 2.9 Conclusion; 2.10 References; 3 Advanced processing techniques for composite materials for structural applications; 3.1 Introduction; 3.2 Manual layup; 3.3 Plate bonding; 3.4 Preforming; 3.5 Vacuum assisted resin transfer molding (VARTM); 3.6 Pultruded composites; 3.7 Automated fiber placement; 3.8 Future trends; 3.9 Sources of further information; 3.10 References.
- 4 Vacuum assisted resin transfer molding (VARTM) for external strengthening of structures4.1 Introduction; 4.2 The limitations of hand layup techniques; 4.3 Comparing hand layup and vacuum assisted resin transfer molding (VARTM); 4.4 Analyzing load, strain, defl ections, and failure modes; 4.5 Flexural fiber-reinforced polymer (FRP) wrapped beams; 4.6 Shear and flexural fiber-reinforced polymer (FRP) wrapped beams; 4.7 Comparing hand layup and vacuum assisted resin transfer molding (VARTM): results and discussion; 4.8 Case study: I-565 Highway bridge girder; 4.9 Conclusion and future trends.
- 4.10 Acknowledgment4.11 References; 5 Failure modes in structural applications of fiber-reinforced polymer (FRP) composites and their prevention; 5.1 Introduction; 5.2 Failures in structural engineering applications of fiber-reinforced polymer (FRP) composites; 5.3 Strategies for failure prevention; 5.4 Non-destructive testing (NDT) and structural health monitoring (SHM) for inspection and monitoring; 5.5 Future trends; 5.6 Conclusion; 5.7 Acknowledgment; 5.8 Sources of further information; 5.9 References.
- 6 Assessing the durability of the interface between fiber-reinforced polymer (FRP) composites and concrete in the rehabilitation6.1 Introduction; 6.2 Interface stress analysis of the fiber-reinforced polymer (FRP)-to-concrete interface; 6.3 Fracture analysis of the fiber-reinforced polymer (FRP)-to-concrete interface; 6.4 Durability of the fiber-reinforced polymer (FRP)-concrete interface; 6.5 References and further reading; Part II Particular types and applications; 7 Advanced fiber-reinforced polymer (FRP) composites for civil engineering applications; 7.1 Introduction.