Cargando…

Multi-label dimensionality reduction /

Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data minin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Liang Sun
Otros Autores: Ji, Shuiwang, 1977-, Ye, Jieping
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, Florida : CRC Press, [2014]
Colección:Chapman & Hall/CRC machine learning & pattern recognition series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Cover; Series; Contents; Preface; Symbol Description; Chapter 1: Introduction; Chapter 2: Partial Least Squares; Chapter 3: Canonical Correlation Analysis; Chapter 4: Hypergraph Spectral Learning; Chapter 5: A Scalable Two-Stage Approach for Dimensionality Reduction; Chapter 6: A Shared-Subspace Learning Framework; Chapter 7: Joint Dimensionality Reduction and Classification; Chapter 8: Nonlinear Dimensionality Reduction: Algorithms and Applications; Appendix Proofs; References; Back Cover.