|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
EBOOKCENTRAL_ocn879631718 |
003 |
OCoLC |
005 |
20240329122006.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
131226t20142014flua ob 000 0 eng d |
040 |
|
|
|a CaPaEBR
|b eng
|e rda
|e pn
|c S4S
|d OCLCO
|d EBLCP
|d DEBSZ
|d HEBIS
|d OCLCF
|d OCLCQ
|d MOR
|d IDB
|d MERUC
|d OCLCQ
|d NTE
|d OCLCO
|d K6U
|d OCLCO
|d RDF
|d ELBRO
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCL
|
019 |
|
|
|a 865330387
|
020 |
|
|
|a 9781439806166
|q (e-book)
|
020 |
|
|
|a 1439806160
|q (e-book)
|
020 |
|
|
|a 9781439806159
|
020 |
|
|
|a 1439806152
|
029 |
1 |
|
|a AU@
|b 000055976231
|
029 |
1 |
|
|a DEBSZ
|b 405624336
|
029 |
1 |
|
|a DEBSZ
|b 449388174
|
029 |
1 |
|
|a AU@
|b 000066770567
|
035 |
|
|
|a (OCoLC)879631718
|z (OCoLC)865330387
|
050 |
|
4 |
|a Q325.5
|b .L52 2014eb
|
082 |
|
4 |
|a 006.3/1
|
049 |
|
|
|a UAMI
|
100 |
1 |
|
|a Liang Sun.
|
245 |
1 |
0 |
|a Multi-label dimensionality reduction /
|c Liang Sun, Shuiwang Ji, and Jieping Ye.
|
264 |
|
1 |
|a Boca Raton, Florida :
|b CRC Press,
|c [2014]
|
264 |
|
4 |
|c ©2014
|
300 |
|
|
|a 1 online resource (206 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Chapman & Hall/CRC machine learning & pattern recognition series
|
504 |
|
|
|a Includes bibliographical references.
|
588 |
0 |
|
|a Online resource; title from PDF title page (ebrary, viewed December 26, 2013).
|
505 |
0 |
|
|a Cover; Series; Contents; Preface; Symbol Description; Chapter 1: Introduction; Chapter 2: Partial Least Squares; Chapter 3: Canonical Correlation Analysis; Chapter 4: Hypergraph Spectral Learning; Chapter 5: A Scalable Two-Stage Approach for Dimensionality Reduction; Chapter 6: A Shared-Subspace Learning Framework; Chapter 7: Joint Dimensionality Reduction and Classification; Chapter 8: Nonlinear Dimensionality Reduction: Algorithms and Applications; Appendix Proofs; References; Back Cover.
|
520 |
|
|
|a Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks a unified treatment of multi-label dimensionality reduction that incorporates both algorithmic developments and applications. Addressing this shortfall, Multi-Label Dimensionality Reduction covers the methodological.
|
590 |
|
|
|a ProQuest Ebook Central
|b Ebook Central Academic Complete
|
650 |
|
0 |
|a Computational complexity.
|
650 |
|
0 |
|a Machine learning.
|
650 |
|
0 |
|a Pattern perception.
|
650 |
|
6 |
|a Complexité de calcul (Informatique)
|
650 |
|
6 |
|a Apprentissage automatique.
|
650 |
|
6 |
|a Perception des structures.
|
650 |
|
7 |
|a Computational complexity
|2 fast
|
650 |
|
7 |
|a Machine learning
|2 fast
|
650 |
|
7 |
|a Pattern perception
|2 fast
|
700 |
1 |
|
|a Ji, Shuiwang,
|d 1977-
|1 https://id.oclc.org/worldcat/entity/E39PCjBGbWR98RQDWVMvfbtyv3
|
700 |
1 |
|
|a Ye, Jieping.
|
758 |
|
|
|i has work:
|a Multi-label dimensionality reduction (Text)
|1 https://id.oclc.org/worldcat/entity/E39PCFw4pF49BDPtQWjRQ9xqwC
|4 https://id.oclc.org/worldcat/ontology/hasWork
|
776 |
0 |
8 |
|i Print version:
|a Sun, Liang.
|t Multi-Label Dimensionality Reduction.
|d Hoboken : Taylor and Francis, ©2013
|z 9781439806159
|
830 |
|
0 |
|a Chapman & Hall/CRC machine learning & pattern recognition series.
|
856 |
4 |
0 |
|u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1433364
|z Texto completo
|
938 |
|
|
|a eLibro
|b ELBO
|n ELB140769
|
938 |
|
|
|a EBL - Ebook Library
|b EBLB
|n EBL1433364
|
994 |
|
|
|a 92
|b IZTAP
|