Cargando…

Multi-label dimensionality reduction /

Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data minin...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Liang Sun
Otros Autores: Ji, Shuiwang, 1977-, Ye, Jieping
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Boca Raton, Florida : CRC Press, [2014]
Colección:Chapman & Hall/CRC machine learning & pattern recognition series.
Temas:
Acceso en línea:Texto completo
Descripción
Sumario:Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information. The data mining and machine learning literature currently lacks a unified treatment of multi-label dimensionality reduction that incorporates both algorithmic developments and applications. Addressing this shortfall, Multi-Label Dimensionality Reduction covers the methodological.
Descripción Física:1 online resource (206 pages) : illustrations
Bibliografía:Includes bibliographical references.
ISBN:9781439806166
1439806160
9781439806159
1439806152