Biaxial nematic liquid crystals : theory, simulation, and experiment /
Liquid Crystals are a state of matter that have properties between those of conventional liquid and those of a solid crystal. Thermotropic liquid crystals react to changes in temperature or, in some cases, pressure. The reaction of lyotropic liquid crystals, which are used in the manufacture of soap...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Chichester, West Sussex :
John Wiley & Sons, Inc.,
2014.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Cover; Contents; About the Editors; List of Contributors; Preface; Chapter 1 Introduction; 1.1 Historical Background; 1.2 Freiser Theory; 1.3 Nematic Order Parameters; 1.4 Nematic Tensor Order Parameters; 1.5 Theoretical Phase Diagrams; 1.6 Landau-de Gennes Theory; 1.7 Computer Simulation; 1.8 Other Theoretical Issues; 1.9 Applications; 1.10 Characterisation; 1.11 Lyotropic and Colloidal Systems; 1.12 Molecular Design; References; Chapter 2 Biaxial Nematics: Order Parameters and Distribution Functions; 2.1 Introduction; 2.2 The Cartesian Language; 2.2.1 Order Parameters.
- 2.2.2 Molecular Symmetry2.2.3 Measurement; 2.3 The Spherical Tensor Language; 2.3.1 The Order Parameters of Biaxial Molecules in a Uniaxial Phase; 2.3.2 Molecular Symmetry; 2.3.3 Measurement; 2.4 Extension to Biaxial Nematics; 2.4.1 Orientational Order Parameters; 2.4.2 Systems with D2h Point Group Symmetry; 2.4.3 Measurement of the Order Parameters; 2.4.4 Systems with C2h Point Group Symmetry and Their Order Parameters; 2.4.5 Systems with C2h Point Group Symmetry: The Cartesian Language; 2.5 Fourth-Rank Order Parameters; 2.6 The Singlet Orientational Distribution Function; 2.7 Appendices.
- 2.7.1 Point Group Symmetry and the Associated Symmetry Operations2.7.2 Legendre Polynomials, Modified Spherical Harmonics and Wigner Rotation Matrices; Acknowledgements; References; Chapter 3 Molecular Field Theory; 3.1 Introduction; 3.2 General Mathematical Theory; 3.2.1 Two-Particle Hamiltonian; 3.2.2 Ensemble Potentials; 3.2.3 Molecular Field Approximation; 3.2.4 Variational Principles; 3.2.5 Local Stability Criterion; 3.3 Non-Polar Molecules; 3.3.1 Quadrupolar Hamiltonians; 3.3.2 Phase Transitions; 3.3.3 Universal Phase Diagram; 3.3.4 Steric Effects; 3.4 Polar Molecules.
- 3.4.1 Dipolar Fluids3.4.2 Dipolar Hamiltonian; 3.4.3 Condensed Polar Phases; References; Chapter 4 Hard Particle Theories; 4.1 Introduction; 4.2 Theoretical Approaches; 4.3 Board-Like Models; 4.4 Bent-Core Models; 4.5 Rod-Plate Mixtures; 4.6 Conclusions and Speculations; Acknowledgements; References; Chapter 5 Landau Theory of Nematic Phases; 5.1 Introduction; 5.2 Symmetry of Biaxial Nematics and Primary Order Parameters; 5.3 Landau Expansion; 5.3.1 Generic NU-I Phase Transition; 5.3.2 Generic NB-NU and NB-I Phase Transitions; 5.3.3 Role of Coupling between Nematic Order Parameters.
- 5.3.4 Landau-de Gennes Expansion in Terms of the Alignment Tensor5.4 Conclusion; Acknowledgements; References; Chapter 6 Computer Simulations of Biaxial Nematics; 6.1 Introduction; 6.2 Order Parameters; 6.3 Model Potentials and Applications; 6.3.1 Lattice Models; 6.3.2 Atomistic Models; 6.3.3 Molecular Models; 6.4 Conclusion; Acknowledgements; 6.5 Appendices; 6.5.1 Quaternions; 6.5.2 Angular Momentum Operator; 6.5.3 Kinematic and Dynamic Equations of Rotational Motion; 6.5.4 Propagator/Integrator of Rotational Equations of Motion; 6.5.5 Gradient of the Biaxial Gay-Berne Potential.