Cargando…

Selected Papers of C C Hsiung.

This invaluable book contains selected papers of Prof Chuan-Chih Hsiung, renowned mathematician in differential geometry and founder and editor-in-chief of a unique international journal in this field, the Journal of Differential Geometry . During the period of 1935-1943, Prof Hsiung was in China wo...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Hsiung, Chuan-Chih
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Singapore : World Scientific Publishing Company, 2001.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mu 4500
001 EBOOKCENTRAL_ocn879025561
003 OCoLC
005 20240329122006.0
006 m o d
007 cr |n|---|||||
008 140501s2001 si o 000 0 eng d
040 |a MHW  |b eng  |e pn  |c MHW  |d EBLCP  |d DEBSZ  |d OCLCQ  |d ZCU  |d MERUC  |d ICG  |d OCLCO  |d OCLCF  |d OCLCQ  |d OCLCO  |d DKC  |d OCLCQ  |d UKAHL  |d OCLCQ  |d OCLCO  |d SGP  |d OCLCQ  |d OCLCO  |d OCLCL 
020 |a 9789812810618 
020 |a 9812810617 
029 1 |a AU@  |b 000058360675 
029 1 |a DEBBG  |b BV044179637 
029 1 |a DEBSZ  |b 405249144 
035 |a (OCoLC)879025561 
050 4 |a QA641  |b .H75 2001 
082 0 4 |a 516.36 
049 |a UAMI 
100 1 |a Hsiung, Chuan-Chih. 
245 1 0 |a Selected Papers of C C Hsiung. 
260 |a Singapore :  |b World Scientific Publishing Company,  |c 2001. 
300 |a 1 online resource (718 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
520 |a This invaluable book contains selected papers of Prof Chuan-Chih Hsiung, renowned mathematician in differential geometry and founder and editor-in-chief of a unique international journal in this field, the Journal of Differential Geometry . During the period of 1935-1943, Prof Hsiung was in China working on projective differential geometry under Prof Buchin Su. In 1946, he went to the United States, where he gradually shifted to global problems. Altogether Prof Hsiung has published about 100 research papers, from which he has selected 64 (in chronological order) for this volume. Contents: Proj. 
505 0 |a Preface; Personal and Professional History; TABLE OF CONTENTS; Sopra il Contatto di Due Curve Piane; A Theorem on the Tangram; 1. Introduction; 2. Lemmas; 3. Proof of the theorem; 4. Remark; Projective Differential Geometry of a Pair of Plane Curves; 1. Introduction; 2. Two projective invariants; 3. The canonical triangle and geometrical characterizations of the invariants; 4. Canonical power series expansions; 5. A generalization of the covariant line of Bompiani; An Invariant of Intersection of Two Surfaces; 1. Introduction; 2. Derivation; 3. A projectively geometric characterization 
505 8 |a 4. A metrically geometric characterizationProjective Invariants of a Pair of Surfaces; 1. Introduction; 2. A projective invariant; 3. A geometrical characterization of the invariant I; 4. Certain projective transformations and invariants; Projective Invariants of Intersection of Certain Pairs of Surfaces; 1. Introduction; I. TWO SURFACES WITH DISTINCT TANGENT PLANES AND DISTINCT ASYMPTOTIC TANGENTS AT AN ORDINARY POINT; 2. Derivation of invariants.; 3. Projective characterizations of the invariants I J 
505 8 |a II . TWO SURFACES WITH DISTINCT TANGENT PLANES AND A COMMON ASYMPTOTIC TANGENT AT AN ORDINARY POINT4. Derivation of an invariant.; 5. A projective characterization of the invariant I; REFERENCES; Some Invariants of Certain Pairs of Hypersurfaces; Introduction; CHAPTER I. TWO HYPERSURFACES WITH COMMON TANGENT HYPERPLANE AT TWO ORDINARY POINTS; 1. Derivation of an invariant.; 2. A projective characterization of the invariant I; 3. A metric characterization of the invariant I; CHAPTER II. TWO HYPERSURFACES WITH DISTINCT TANGENT HYPERPLANES AT TWO ORDINARY POINTS; 4. Derivation of invariants. 
505 8 |a 5. Projective characterizations of the invariants I J6. Metric characterizations of the invariants I J; A Projective Invariant of a Certain Pair of Surfaces; REFERENCES; Projective Invariants of Contact of Two Curves in Space of n Dimensions; 1. Introduction; 2. Derivation of invariants; 3. Geometrical characterizations of the invariants Ji n~i+2; 4. A geometrical characterization of a general invariant Iij; On Triplets of Plane Curvilinear Elements with a Common Singular Point; 1. Introduction; 2. Derivation of an invariant; 3. Geometrical characterizations of the invariant I 
505 8 |a Invariants of Intersection of Certain Pairs of Curves in n-Dimensional SpaceIntroduction; CHAPTER I. Two Curves Intersecting at an Ordinary Point With Distinct Osculating Linear Spaces.; 1. Derivation of Invariants.; 2. Metric and projective characterizations of a general invariant Ii.; CHAPTER II. Two Curves Intersecting at an Ordinary Point With Distinct Tangents But Certain Common Osculating Linear Spaces.; 3. Derivation of invariants.; 4. Metric and projective characterizations of general invariants Ii and Ji.; Affine Invariants of a Pair of Hypersurfaces; 1. Introduction 
590 |a ProQuest Ebook Central  |b Ebook Central Academic Complete 
600 1 0 |a Hsiung, Chuan-Chih,  |d 1916-2009. 
600 1 7 |a Hsiung, Chuan-Chih,  |d 1916-2009  |2 fast  |1 https://id.oclc.org/worldcat/entity/E39PBJrmckbGyXQbR4YXwCBMfq 
650 0 |a Geometry, Differential. 
650 6 |a Géométrie différentielle. 
650 7 |a Geometry, Differential  |2 fast 
758 |i has work:  |a Selected Papers of C C Hsiung (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGb8TdpFHJFKKDbXkgcxCP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9789810243234 
856 4 0 |u https://ebookcentral.uam.elogim.com/lib/uam-ebooks/detail.action?docID=1681707  |z Texto completo 
938 |a Askews and Holts Library Services  |b ASKH  |n AH24685561 
938 |a EBL - Ebook Library  |b EBLB  |n EBL1681707 
994 |a 92  |b IZTAP